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ABSTRACT
To analyze the effect of the oceans and atmosphere on land
climate, Earth Scientists have developed climate indices,
which are time series that summarize the behavior of se-
lected regions of the Earth’s oceans and atmosphere. In
the past, Earth scientists have used observation and, more
recently, eigenvalue analysis techniques, such as principal
components analysis (PCA) and singular value decomposi-
tion (SVD), to discover climate indices. Recently, an al-
ternative clustering-based methodology has been developed
for identifying climate indices. This paper presents prelim-
inary work evaluating the effectiveness of Sea Surface Tem-
perature (SST) and Sea Level Pressure (SLP) cluster-based
indices in predicting land temperature and their relative per-
formance with respect to known climate indices. As part of
our effort, we studied the North Atlantic Oscillation (NAO)
index, which is known to impact land temperature in the
US, and its cluster-based counterpart, which is derived us-
ing daily SLP data from the Atlantic Ocean for a 25 year
period (1979-2003). We also studied the predictive power of
28 SST clusters that were identified as the most promising
clusters derived from monthly SST data for a 41-year period
(1958-1998) [14]. These clusters were shown to be similar
to well known climate indices in terms of area weighted cor-
relation to global land temperature, and were considered as
prime candidates for further evaluation. Our preliminary
results are very encouraging. They show that many of the
cluster-based indices can outperform known climate indices
in predicting anomalies in land temperature for certain parts
of the world.
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1. INTRODUCTION
It is well known that ocean, atmosphere and land pro-

cesses are highly coupled, i.e., climate phenomena occurring
in one location can affect the climate at a far away loca-
tion. Indeed, understanding these climate teleconnections is
critical for finding the answer to questions such as how the
Earth’s climate is changing and how ecosystems respond to
global environmental change. A common way to study such
teleconnections is by using climate indices [9, 10], which dis-
till climate variability at a regional or global scale into a sin-
gle time series. For example, El Niño, the anomalous warm-
ing of the eastern tropical region of the Pacific, has been
linked to climate phenomena such as droughts in Australia
and heavy rainfall along the Eastern coast of South Amer-
ica [17]. Most commonly used climate indices are based on
sea level pressure (SLP) and sea surface temperature (SST).
Earth scientists have used observation and, more recently,
eigenvalue analysis techniques, such as principal components
analysis (PCA) and singular value decomposition (SVD), to
discover climate indices.

In [14] an alternative clustering-based technique was pre-
sented for discovering climate indices. The use of clustering
is driven by the intuition that a climate phenomenon is ex-
pected to involve a significant region of the ocean or atmo-
sphere, and that we expect that such a phenomenon will be
’stronger’ if it involves a region where the behavior is rel-
atively uniform over the entire area. SNN clustering [4, 5,
6] has been shown to find such homogeneous clusters. Each
of these clusters can be characterized by a centroid, i.e., the
mean of all the time series describing the points (locations)
in the cluster, and thus, these centroids represent potential



climate indices. It was demonstrated that the centroids of
many clusters of SST and SLP, which were discovered using
the SNN clustering algorithm, correspond to known climate
indices; other clusters were found to be variants of known
climate indices that could provide better predictive power
for some land areas; and still other clusters represent poten-
tially new Earth science phenomena.

This paper presents two different sets of experimental re-
sults evaluating the effectiveness of SST and SLP cluster-
based indices in predicting land temperature, particularly in
comparison to known climate indices. In the first set of ex-
periments, we study the North Atlantic Oscillation (NAO)
index, which is known to impact land temperature in the
United States, and its cluster-based counterpart that is de-
rived using daily SLP data from the Atlantic Ocean for a
25 year period (1979-2003). In the second set of experi-
ments, we study the predictive power of 28 SST clusters that
were identified as the most promising clusters derived from
monthly SST data for a 41-year period (1958-1998) [14].
These clusters were shown to be similar to well known cli-
mate indices in terms of area weighted correlation to global
land temperature, and were considered as prime candidates
for further evaluation. This set of experiments first tries to
answer two questions: In which land areas can temperature
be predicted by the selected 28 SST clusters? How do predic-
tions based on these SST clusters compare to those obtained
from (a) models that use known climate indices and (b) mod-
els that use only temporal autocorrelation? Second, the ex-
periments also investigate whether the use of SST clusters
can augment prediction based on temporal autocorrelation,
and if so, how the results compare to predictions obtained
using temporal autocorrelation augmented with known cli-
mate indices.

Paper organization. Sections 2 and 3 provide a quick
overview of the Earch science data and climate indices that
we used in our experiments. Sections 4 and 5 discuss the
two sets of experiments, respectively. Section 6 summarizes
our work and indicates future directions.

Note: The pictures in this paper should be viewed in color.
A pdf version of this paper with color figures can be found at
http://www.cs.umn.edu/∼kumar/papers/kdd04nasa.pdf.

2. EARTH SCIENCE DATA AND
CHALLENGES

The Earth science data for our analysis consists of global
snapshots of measurement values for a number of variables
(e.g., temperature, pressure) collected for all land and sea
surfaces (see Figure 1). For the analysis presented here,
we focus on attributes measured at points (grid cells) on
latitude-longitude spherical grids of different resolutions, e.g.,
global land temperature, which is available at a resolution
of 0.5◦

×0.5◦, US land temperature available at a resolution
of 8 km × 8 km, and SST, which is available for a 1◦

× 1◦

grid, and SLP, which is available for a 2.5◦

× 2.5◦ grid. Our
analysis uses data available at daily as well as monthly in-
tervals.

The spatial and temporal nature of Earth Science data
poses a number of challenges. For instance, Earth Science
time series data is noisy, has cycles of varying lengths and
regularity, and can contain long term trends. In addition,
such data displays spatial and temporal autocorrelation, i.e.,
measured values that are close in time and space tend to
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Figure 1: A simplified view of the problem domain.

be highly correlated, or similar. To handle these issues,
we perform different types of preprocessing for daily and
monthly data that we will describe in subsequent sections.
For further details on these issues, we refer the reader to [15,
16] and [14].

3. CLIMATE INDICES
Climate indices [9, 10] are time series that capture the

variability of climate for certain regions of the world. Out of
the well-known indices listed in Table 1, PDO, CTI, NINO1+2,
NINO3, NINO3.4, and NINO4 are based on temperature
anomalies at different regions of the world, while SOI, NAO,
AO, and WP are based on SLP. SOI and NAO are computed
from differences in pressure between regions, while AO and
PDO are obtained by PCA techniques.

Table 1: Description of well-known climate indices.
Index Description

SOI (Southern Oscillation Index) Measures the SLP
anomalies between Darwin and Tahiti

NAO (North Atlantic Oscillation) Normalized SLP
differences between Ponta Delgada, Azores and
Stykkisholmur, Iceland

AO (Arctic Oscillation) Defined as the first principal
component of SLP poleward of 20◦ N

PDO (Pacific Decadel Oscillation) Derived as the
leading principal component of monthly SST
anomalies in the North Pacific Ocean, poleward
of 20◦N

QBO (Quasi-Biennial Oscillation Index) Measures the
regular variation of zonal (i.e. east-west) strato-
spheric winds above the equator

CTI (Cold Tongue Index) Captures SST variations in
the cold tongue region of the equatorial Pacific
Ocean (6◦N-6◦S, 180◦-90◦W)

WP (Western Pacific) Represents a low-frequency
temporal function of the ‘zonal dipole’ SLP spa-
tial pattern involving the Kamchatka Peninsula,
southeastern Asia and far western tropical and
subtropical North Pacific

NINO1+2 Sea surface temperature anomalies in the region
bounded by 80◦W-90◦W and 0◦-10◦S

NINO3 Sea surface temperature anomalies in the region
bounded by 90◦W-150◦W and 5◦S-5◦N

NINO3.4 Sea surface temperature anomalies in the region
bounded by 120◦W-170◦W and 5◦S-5◦N

NINO4 Sea surface temperature anomalies in the region
bounded by 150◦W-160◦W and 5◦S-5◦N
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Figure 2: Average Temperature in the United States
on January 1, 1980

4. COMPARISON OF NAO AND A CLUSTER-
BASED VARIANT USING US LAND
TEMPERATURE

NAO is one of the oldest known world weather patterns—
some of the earliest descriptions of it came from seafaring
Scandinavians several centuries ago. NAO refers to swings
in the atmospheric sea level pressure difference between the
Arctic and the subtropical Atlantic that are most noticeable
during the boreal cold season (November-April) and are as-
sociated with changes in the mean wind speed and direction
in the North Atlantic [8]. It is well-known in the Earth
Science community that NAO influences temperature and
snowfall in the Eastern United States and Europe during
the cold season [7, 13].

A daily NAO index is available from 1950 to near realtime
from the National Oceanic and Atmospheric Administration
(NOAA) [11]. This dataset consists of NAO anomaly (de-
partures from the mean) measurements for every day since
January 1, 1950. We preprocessed this dataset by filter-
ing out high-frequency noise using a 7-day centered running
average.

We obtained daily temperature data from 1980 – 1997
from the University of Montana Numerical Terradynamic
Simulation Group (NTSG) [3]. This is the highest temporal
and spatial resolution dataset available for temperature in
the United States. The data we have used is at a resolution
of 8 km × 8 km, although the original data is available at
a resolution of 1 km × 1 km. For each day, we computed
the average temperature as the mean of the maximum and
minimum temperature measurements, and used the average
temperature to represent the temperature for that day. Av-
erage temperature is typically computed in this manner for
summary-of-the-day observations [2]. For example, Figure
2 shows the average temperature (in Celsius) in the United
States on January 1, 1980. To filter out high-frequency noise
from the data, we use a 7-day centered running mean across
the dataset. We then preprocessed the temperature data
by transforming it from temperature measurements to tem-
perature anomalies. We compute the temperature anomaly
for a particular point on a particular day by subtracting the
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Best Shifted Correlation : NAO anomalies with Temperature Anomalies
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Figure 3: Best shifted correlation between NAO
and temperature anomalies for 17 extended win-
ters
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Best Shifts (days) : NAO anomalies with Temperature Anomalies
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Figure 4: Shifts (days) that gave the best shifted
correlation

mean temperature for that day across the dataset from the
temperature measurement on that day. Therefore, the final
temperature data we use is a time series for each land lo-
cation in the United States that contains daily temperature
anomalies from 1980 – 1997.

A daily SLP dataset was obtained from NCEP Reanalysis
2 data provided by the NOAA-CIRES Climate Diagnostics
Center, Boulder, Colorado, USA, at their Web site [12]. The
resolution of this dataset is 2.5◦

× 2.5◦. We preprocessed
the 25 year (1979 – 2003) daily SLP dataset by normalizing
the data. We first applied a filter using a 7-day centered
running average to smooth high-frequency noise. Then, the
time series for each SLP grid location was normalized by
subtracting the mean pressure for that location. This makes
the mean of each time series zero.

4.1 Impact of NAO on US Land Temperature
We have used two methodologies to examine the relation-

ship between NAO and land temperature over the United



States during the cold season. We focus on the cold sea-
son because NAO exhibits most of its variability during the
extended winter (December-March).

We have used correlation in our past studies with Earth
Science data, and we use it in this study as our first method.
Since NAO can have an impact on temperature in different
places at different times, we take these lags into account.
Thus, it is necessary to compute the correlation for various
shifts. This involves shifting the two time series to simulate
leads (lags) of up to 15 days, computing the correlation, and
then taking the ‘best’ (highest positive or negative value)
as the correlation. However, taking the ‘best shifted cor-
relation’ for each land point, individually, can lead to two
neighboring points having correlations corresponding to dif-
ferent shifts. Thus, we employed a ’smoothing’ procedure
which ensures that the ‘best’ shift at a point is as consistent
as possible with respect to its neighboring points [14]. Since
we focused only on extended winters, correlation had to be
computed separately for each extended winter. For each
land location, we use the shift that gives the best overall
correlation over all the extended winters. Figure 3 shows the
best shifted correlation of NAO anomalies and temperature
anomalies for 17 extended winters between 1980 and 1997.
Figure 4 shows the shifts that produced the best correlation
at each point. The shifts required minimal ‘smoothing’ in
this case. Figure 3 shows that NAO has its strongest re-
lationship with temperature in the Eastern United States.
This conforms to our expectation that NAO impacts tem-
perature in the Eastern United States during the cold season
(extended winter).

A second method that we used to evaluate the impact of
NAO on land temperature is similar to the runs test from
statistics [1], which can be used to decide if a data set is
from a random process. A run is defined as a series of in-
creasing values or a series of decreasing values. The number
of increasing, or decreasing, values is the length of the run.
For NAO and land temperature anomaly data we define a
run as the number of days that both the anomalies have the
same sign. We allow a small number of sign changes (tol-
erance) when counting runs since we would like to be able
to observe very long runs even if there are a few days where
the two anomalies do not have the same sign. For exam-
ple, if a particular land location had temperature anomalies
with the same sign at NAO anomalies for 80 days except
for 3 days somewhere in between, we would still count this
as a run of length 80. Using this methodology, we counted
runs of all lengths for NAO and temperature anomalies at a
tolerance level of 3. As in the case of correlation, we focus
only on extended winters. Figure 5 shows the number of
runs longer than twenty days weighted with the length of
the run. Similarly, Figure 6 and Figure 7 show runs longer
than 40 and 80 days, respectively.

Figure 5 shows that a large number of the runs of length
20 and longer are concentrated around a similar area where
the NAO is known to have most impact. However, as we
look at runs of longer lengths only, as in Figure 6 and 7,
we see that the areas of significance shift away from the
Eastern coastal areas of the United States. In Figure 8 we
show the longest run that could be found at each land lo-
cation across the US. This figure clearly shows that regions
that have the longest runs are not where NAO is known to
have most impact. The longest run was 111 days for seven
contiguous land points in the Northwest US. In Figure 10,
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Figure 5: Weighted runs of length 20 and longer
between NAO and temperature anomalies
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Figure 6: Weighted runs of length 40 and longer
between NAO and temperature anomalies
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Figure 7: Weighted runs of length 80 and longer
between NAO and temperature anomalies
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Figure 8: Longest run: NAO and Temperature
anomalies
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Figure 9: A single extended winter for a point in
the Northeast US

we show NAO and temperature anomalies of one of these
points for the extended winter (1991-1992) when this run
occurred. Therefore, it appears that even though NAO is
known to have most influence over land temperatures in the
Eastern United States, the runs of NAO and temperature
in this region are not the longest when compared to the rest
of the country. This could be due to a number of reasons
including the possibility that temperature near the Eastern
coast is influenced much more by the ocean and is therefore
prone to more fluctuation. The presence of long runs in the
Southern United States indicates that NAO have influence
even in areas other than the Eastern United States that are
traditionally considered to be impacted by NAO. One may
need to study additional factors (e.g. events occurring in
the Gulf Of Mexico or Pacific Ocean) to understand when
NAO does impact these areas.
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Figure 10: A 111-day long run

A comparison of the two methodologies we have used
above to evaluate the impact of NAO on land temperature
shows that the two methods give us different insights into
what we are trying to evaluate. Both methods have different
limitations, advantages. Figure 8 would even suggest that
the two methods are complementary. It is clear that correla-
tion shows us where NAO has the most impact consistently

over all the extended winters. These regions, as we would
expect, are in the Eastern United States. A close look at
NAO and temperature anomaly time series of a few points
in the Eastern US showed that even though the time series
visually appeared to have a clear relationship, a few days
of difference in trends reduces the correlation, making the
relationship appear weak. Figure 9 shows the time series for
an extended winter of one such point in the Northeastern
US. The NAO and temperature anomalies visually appear
to have a relationship but this is not reflected in the cor-
relation (0.18). However, when correlation was computed
excluding the 45 days in the middle of the time series, the
value obtained was 0.53. Therefore, correlation is suscep-
tible to periods of difference in trend. However, even in
periods of high correlation, looking at the runs, one would
not see long runs since the two time series change signs in
short periods of a few days. Similarly, Figure 10 shows a
point that has a very long run where NAO and temperature
anomalies have the same sign, but the correlation is only
0.25.

4.2 Impact of SLP Cluster-based Indices on
US Land Temperature

We used the SNN clustering algorithm to generate a cluster-
based variant of NAO index, and compared its performance
with the standard NAO index. The SNN clustering algo-
rithm was applied to the transformed data and 26 clusters
were obtained. Figure 11 shows the clusters. The clusters
are numbered in the figure for labeling purposes only.

There were 4 clusters in the Atlantic Ocean that got our
attention because they were in locations close to where NAO
is active. These are clusters 7, 15, 10a and 10b. We con-
structed indices using these clusters to compare them to the
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Figure 11: SLP Clusters found by SNN algorithm

Longitude [West] (in degrees)

La
tit

ud
e 

[N
or

th
] (

in
 d

eg
re

es
)

Correlation : Clusters 7−10b Anomalies with Temperature Anomalies

130 125 120 115 110 105 100 95 90 85 80 75 70 65 60

50

45

40

35

30

25

20 −0.2

−0.1

0

0.1

0.2

0.3

Figure 12: Best shifted correlation between SLP
cluster-based index and temperature anomalies

standard NAO index. We selected clusters in the North At-
lantic and mid-Atlantic Ocean to generate an SLP cluster-
based index. First, we took the centroid of the each of the
clusters by taking the mean of the daily SLP time series
of the grid locations that comprise the cluster. A 7-day
centered running average filter was applied to smooth high-
frequency noise. Then, the SLP time series of the centroid
was transformed to an anomaly by subtracting the daily
mean for each day from the measurement for that day. Then,
we constructed three indices by taking the difference of the
anomalies of the clusters found near Greenland (clusters 15,
10a, and 10b) and the cluster found near the Azores (clus-
ter 7). We will present the results of only one index here
(clusters 7 - cluster 10b) because it performed slightly better
than the other two.

We applied the same methodology to evaluate the influ-
ence of the SLP cluster-based index on US land temper-
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Figure 13: Shifts that gave the best shifted correla-
tion for SLP cluster-based index
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              Weighted runs (length > 20 ) : Clusters 7−10b and Temperature Anomalies
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Figure 14: Weighted runs of length 20 and longer
between SLP cluster-based index and temperature
anomalies.

ature as we used to evaluate the influence of the standard
NAO index. We focus only on the extended winters, put the
cluster-based index in place of the standard NAO index and
perform the evaluation using an identical procedure (i.e. all
the parameters such as tolerance of 3 days were the same).
Figures 12 and 13 show the best shifted correlation and best
shifts obtained for our cluster-based index.

We show the runs of length 20, 40 and 80 days or longer in
Figures 14, 15, and 16, respectively. The runs of maximum
length for each location are shown in Figure 17. We present
a comparison of the performance of the standard NAO index
and our SLP cluster-based index in the next subsection.
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               Weighted runs (length > 40) : Clusters 7−10b and Temperature Anomalies
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Figure 15: Weighted runs of length 40 and longer
between SLP cluster-based index and temperature
anomalies.
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Figure 16: Weighted runs of length 80 and longer
between SLP cluster-based index and temperature
anomalies.

4.3 Comparison of NAO and SLP Cluster-based
Index

We compared the performance of the two indices by look-
ing at their performance in each of the experiments that were
performed above. Figure 18 shows the difference between
the best shifted correlation of the two indices. Positive num-
bers indicate that our cluster-based index performed better,
while negative numbers indicate that the standard NAO in-
dex performed better. We see that our cluster-based index
performs as well as the standard NAO index in the Eastern
United States. There are very few regions where our in-
dex does worse, and large regions (especially near the West
coast) where it does much better than the standard NAO
index.
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Figure 17: Longest run: Clusters 7-10b with tem-
perature anomalies.
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Figure 18: Comparison of best shifted correlation :
Clusters 7-10b vs NAO

Similarly, we look at the differences for runs longer than
20, 40 and 80 days, and maximum length runs in Figures
19, 20, 21 and 22, respectively. The runs also show that
our index performs as well as the standard index in most
regions.

5. IMPACT OF SST ON LAND TEMPERA-
TURE

In the second set of experiments we use the SST clusters
discovered in [14]. Out of the 108 clusters, we selected the
28 that had area-weighted correlation comparable to known
climate indices. In this section, we explore the possibility of
using these clusters for predicting anomalies in global land
temperature.

The SST and average temperature datasets consist of monthly
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Figure 19: Comparison of Weighted runs of length
20 and more : Clusters 7-10b vs NAO
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Figure 20: Comparison of Weighted runs of length
40 and more : Clusters 7-10b vs NAO

measurements for the 41 years between 1958 and 1998. In
order to remove seasonality, the temperature dataset was
normalized on a monthly basis. This means that data for
different months are normalized separately i.e., the 41 Jan-
uaries are normalized separately from the 41 Februaries. A
positive temperature anomaly occurs, when the normalized
temperature exceeds 1.2 standard deviations from the mean
for that month (i.e., the mean of the 41 Januaries). Simi-
larly, a negative anomaly occurs, when the normalized tem-
perature falls below -1.2 standard deviations. Based on the
SST time series (possibly in conjunction with the temper-
ature time series), our goal is to predict whether a certain
land region will have normal (not anomalous), anomalously
high or low temperature in a given future month.

5.1 Methodology
First, we identify regions of the land that behave homoge-
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Figure 21: Comparison of Weighted runs of length
80 and more : Clusters 7-10b vs NAO
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Figure 22: Comparison of longest runs (difference
in days) : Clusters 7-10b vs NAO

neously. As explained earlier, significant climate processes
affect larger areas, hence predictions that hold for larger ar-
eas are more reliable. We use SNN clustering to discover
these regions because it has all the desired properties: the
clusters are homogeneous and continuous. Figure 23 dis-
plays the 118 land clusters.

Next, for each land cluster and for each SST cluster, we
build a model. The model is built on the first 20 years
of the time series (between 1958 and 1977) using various
predictors and the predictive performance of the model is
evaluated on the remaining 21 years. Since both the positive
and the negative anomalies are rare, we use F-measure as
an indicator of the predictive performance of our model.

This set of experiments first tries to answer two ques-
tions: In which land areas can temperature be predicted
by the selected 28 SST clusters? How do predictions based
on these SST clusters compare to those obtained from (a)
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Figure 23: SNN clustering of the World based on
land temperature

models that use known climate indices and (b) models that
use only temporal autocorrelation? Second, the experiments
also investigate whether the use of SST clusters can augment
prediction based on temporal autocorrelation, and if so, how
the results compare to predictions obtained using tempo-
ral autocorrelation augmented with known climate indices.
(Temporal autocorrelation is useful for predicting time se-
ries, since, for example, today’s temperature is often similar
to yesterday’s temperature. This approach also provides a
baseline for comparison.)

5.2 Effect of SST Clusters on Land Clusters
For each land cluster and SST cluster pair, a predictive

model is built. The predictors are the SST value of target
month and the SST values for the preceding two months.
Figures 25 and 28 show the land clusters plotted on a map
and their colors are indicative of the F-measure with respect
to the positive and negative anomalies.

For comparison purposes, Figures 24 and 27 depict the
performance of temporal autocorrelation-based prediction.
In this case, the predictors are the normalized temperatures
for three consecutive months prior to the target month; nat-
urally, not including the target month. Also, a comparison
is made with the performance of predictions using the cli-
mate indices. The respective plots are provided in Figures
26 and 29.

Discussion In contrary to our expectation, the prediction
results of autocorrelation based prediction were poor except
for 3 clusters in South-America for positive anomalies and
two cluster (one in East Africa and one in Australia) for
negative anomalies.

The use of SST clusters or climate indices (instead of the
temporal autocorrelation) appears to provide improved pre-
diction results for most areas of the world. The known cli-
mate indices offer excellent predictive power of Peru and
India for positive events and they predicted negative events
well in South-America and Japan. SST clusters show im-
provement in predictive power in most of South-America and

Indonesia for negative events, and in Scandinavia, South-
Africa, South-America, Cambodia and Indonesia for posi-
tive events.

Some of the land regions, in which temperature can be
predicted by climate indices and SST clusters, overlap. This
was expected, because some of the climate indices are based
on SST, and hence some of SST clusters were found to have
high correlation with these climate indices.

It must be noted that the excellent performance of the
known climate indices in Peru is due to the El-Niño indices.
Since this work focuses on teleconnections, this particular
prediction in Peru is not interesting, because the predictor
lies very close to the shore. In order to avoid such mislead-
ing results, a distance based filtering was applied in case of
the SST clusters: all prediction results where the distance
between the predictor and the centroid of the land cluster
is less than 3000 km were omitted. However, for climate in-
dices, their locations are not always well defined [e.g., NAO
is defined as the sea level pressure difference between two
points], therefore such filtering could not be applied.

5.3 SST clusters enhancing auto-correlation
based prediction

In this subsection, we investigate whether SST clusters
can enhance the temporal auto-correlation based prediction.
In this case, we use both the temperature data and the SST
data as predictors: the temperature values for 3 months
prior to the target month, and the SST values for three
consecutive months including the target month. Figures 30
and 32 depict the prediction performance with respect to
positive and negative anomalies. For comparison purposes,
we have also substituted SST clusters with climate indices.
Their performance is depicted in Figures 31 and 33.

Discussion. Prediction using auto-correlation in conjunc-
tion with climate indices or SST clusters produces consid-
erably better prediction than either approach used alone.
In the case of SST clusters, for negative anomalies, the im-
provement is substantial for portions of North- and South-
America, the Middle East and Indonesia; for positive anoma-
lies, for portions of South-America, Africa, India, Cambodia
and Indonesia.

We detected a few regions, where the augmentation with
climate indices had an adverse effect on predictive perfor-
mance. We suspect that this phenomenon is simply a prob-
lem with our classifier, namely that the model overfits the
data.

Generally, the improvement due to SST clusters is larger
than the improvement due to the climate indices. For neg-
ative anomalies, climate indices have achieved larger im-
provement only in the Northern Arctic area, while improve-
ments due to SST clusters are more pronounced in parts of
South-America, Africa, the Mediterranean, the Middle East
and Indonesia. For positive anomalies, the only two regions,
where the climate indices have achieved higher improvement
is Peru (due to the El-Niño indices) and Northern-Europe,
while the improvement due to SST clusters was more marked
in parts of North- and South-America, Africa, the Middle
East and Indonesia.

6. CONCLUSIONS AND FUTURE WORK
In previous work we used clustering to discover poten-

tial climate indices. In this paper, we extended this work
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Figure 24: Prediction performance (F-
measure) for positive anomalies using tem-
poral auto-correlation.

Predictive power of SST clusters; positive events
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Figure 25: Prediction performance (F-
measure) for positive anomalies using SST
clusters.

Predictive power of OCIs; positive events
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Figure 26: Prediction performance (F-
measure) for positive anomalies using cli-
mate indices.

Predictive power of auto−correlation based prediction; negative anomalies
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Figure 27: Prediction performance (F-
measure) for negative anomalies using tem-
poral auto-correlation.

Predictive power of SSt clusters; negative events
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Figure 28: Prediction performance (F-
measure) for negative anomalies using SST
clusters.

Predictive power of OCIs; negative events
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Figure 29: Prediction performance (F-
measure) for negative anomalies using cli-
mate indices.



Predictive power of autocorrelation−based prediction with SST clusters; positive events
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Figure 30: Prediction performance (F-measure) of
predicting positive anomalies using auto-correlation
in conjunction with SST clusters.

Predictive power of autocorrelation−based prediction with OCIs; positive events
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Figure 31: Prediction performance (F-measure) of
predicting positive anomalies using auto-correlation
in conjunction with known climate indices.

by exploring the feasibility of predicting land temperature
using these cluster based climate indices. For one portion
of this work, we generated a cluster-based index that was
a variant of the well known NAO climate index and con-
ducted experiments to compare the predictive performance
of this index and NAO with respect to land temperature
anomalies in the United States. We found that the cluster-
based index performs as well as NAO in the Eastern US,
but performs better in large portions of the western US. In
another portion of this work, we used SST clusters as pre-
dictors of global land temperature anomalies and found, for

Predictive power of autocorrelation−based prediction with SST clusters; negative events
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Figure 32: Prediction performance (F-measure) of
predicting negative anomalies using auto-correlation
in conjunction with SST clusters.

Predictive power of autocorrelation−based prediction with OCIs; negative events
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Figure 33: Prediction performance (F-measure) of
predicting negative anomalies using auto-correlation
in conjunction with known climate indices.

certain regions of the world, that the SST clusters outper-
form known climate indices. We also showed that using SST
clusters with autocorrelation-based prediction substantially
improves prediction performance.

The results presented in this paper, while promising, are
preliminary, and more work is needed in a number of areas.
We need, for instance, to be better able to address the sig-
nificance of the relationships that we find. For example, how
likely is it that a high correlation between a land area and
a cluster index can arise by chance? Similarly, how likely
is it that the better predictive performance of cluster based



climate indices with respect to known climate indices is due
to the fact that there are more cluster based climate indices
than known climate indices? Also, we would like to explore
predictive techniques other than Ripper and measures of
similarity other than correlation. Finally, another impor-
tant area for future work is ‘moving’ clusters, i.e., clusters
whose locations change with time. In the experiments pre-
sented in this paper, we used stationary clusters, but moving
clusters are expected to offer better results since they better
model the underlying behavior of the Earth.
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