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Abstract

We have investigated global teleconnections of climate to regional satellite-driven

observations for prediction of Amazon ecosystem production, in the form of monthly

estimates of net carbon exchange over the period 1982–1998 from the NASA–CASA

(Carnegie–Ames–Stanford) biosphere model. This model is driven by observed surface

climate and monthly estimates of vegetation leaf area index (LAI) and fraction of

absorbed PAR (fraction of photosynthetically active radiation, FPAR) generated from the

NOAA satellite advanced very high-resolution radiometer (AVHRR) and similar sensors.

Land surface AVHRR data processing using modified moderate-resolution imaging

spectroradiometer radiative transfer algorithms includes improved calibration for intra-

and intersensor variations, partial atmospheric correction for gaseous absorption and

scattering, and correction for stratospheric aerosol effects associated with volcanic

eruptions. Results from our analysis suggest that anomalies of net primary production

and net ecosystem production predicted from the NASA–CASA model over large areas

of the Amazon region east of 601W longitude are strongly correlated with the Southern

Oscillation index. Extensive areas of the south-central Amazon show strong linkages of

the FPAR and the NASA–CASA anomaly record to the Arctic Oscillation index, which

help confirm a strong relation to southern Atlantic climate anomalies, with associated

impacts on Amazon rainfall patterns. Processes are investigated for these teleconnec-

tions of global climate to Amazon ecosystem carbon fluxes and regional land surface

climate.
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Introduction

The Amazon region includes the largest remaining

tropical forest ecosystem on Earth. The Amazon rain

forest accounts for about 10% of the world’s terrestrial

productivity and vegetation biomass, and can play an

important role in regulating the Earth’s carbon cycle

and climate (Cox et al., 2000). Despite the Amazon’s

potential importance for climate regulation, the precise

pattern of terrestrial sources and sinks for CO2 and

other ‘greenhouse gas’ compounds remain uncertain

for the region. These large gaps in our knowledge still

exist to a great degree because many impacts of land

cover and geochemical controls related to surface

climatology have not been understood in adequate

detail to determine precise regional flux controls for

biogenic trace gases.

In recognition of the changing environmental condi-

tions in the Amazon basin, international collaboration

between scientists from Brazil, the United States, and

the European Union have led to the ‘Large Scale

Atmospheric Biosphere Experiment in Amazonia’ (or

LBA) (see http://lba.cptec.inpe.br/lba/eng/science.

htm). The LBA has been designed to address a number

of the major science questions that emerge from rapid
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changes in land cover over the region. One primary

goal of LBA is to understand the regulators of carbon

exchange and energy balance in all Amazon ecosystems

(LBA, 1996). A chief emphasis is to up-scale measure-

ments to the region by integrating flux field measure-

ments, process model predictions, and land surface

characterizations derived from remote sensing. Within

this integrated study context, it is important to under-

stand the natural variability occurring within the

Amazon region, particularly with respect to large-scale

ocean–atmosphere–biosphere connections.

The influence of ocean surface patterns, such as those

associated with the El Niño-Southern Oscillation

(ENSO), have been noted as significant global tele-

connections for atmospheric circulation and land sur-

face climate (Glantz et al., 1991). Teleconnection is a

term used in climatological studies to describe near-

simultaneous variation in climate and related processes

over widely separated points on earth. There are

different phases in climate phenomenon such as the

ENSO, which is called El Niño in the warm phase and

La Niña in the cold phase. ENSO warming at the sea

surface, which related to ocean–atmosphere heat

exchange, typically extends to about 301N and 301S

latitude, with lags into continental land areas of several

months.

Several previous studies have attempted to docu-

ment the influence ENSO events on the net primary

production (NPP) and annual carbon balance of

Amazon forest ecosystems (Prentice & Lloyd, 1998;

Tian et al., 1998; Potter et al., 2001; Foley et al., 2002).

However, large-scale teleconnections between multiple

climate indices and Amazon regional carbon fluxes

have yet to be demonstrated, and may escape ready

detection without the aid of spatial–temporal analysis

tools designed specifically to uncover such associations,

both weak and strong, between time series of climate

index anomalies and spatially explicit estimates of

carbon fluxes on the land. We also note that in a recent

study applying principal component analysis to the

Amazon climate data, Botta et al. (2002) showed that

ENSO cycles explain only about 21% of the total

variance in annual mean precipitation and temperature

for the Amazon region. This implies that other global

climate forces may be operating to drive ecosystem

carbon cycling over substantial portions of the Amazon

basin.

We report here on studies to identify and quantify

teleconnections of ocean–atmosphere climate indices

and terrestrial carbon fluxes for the Amazon region, as

represented by monthly NPP and net ecosystem

production (NEP) predicted using an ecosystem mod-

eling approach that covers the period 1982–1998. A

simulation model for NEP was used to generate these

regional carbon fluxes, because the number of ground-

based measurements of Amazon NEP and NPP is highly

limited in space and time. Our specific objectives are to

(1) use satellite observations to make assessments of

seasonal and interannual vegetation dynamics in the

Amazon during the 1980s and 1990s, in relation to

major climate indices, and (2) understand the major

teleconnections of climate to carbon cycling patterns

and processes in the Amazon region, using EOS sate-

llite data products to drive a model of NEP. To interpret

our results, it is also necessary to integrate information

on when and where anomalies in NPP and NEP

controllers (land surface temperature and precipitation)

are linked to similar patterns in the climate indices.

Global data and models

Several climate indices are of prime interest in this

study of land teleconnections (Trenberth & Hurrell,

1994). We focus here primarily on the Southern

Oscillation index (SOI) and the Arctic Oscillation (AO)

index, and secondarily on two NINO indices. Correla-

tions between these climate index anomalies and

monthly gridded sea surface temperature (SST) (Bot-

tomley et al., 1990; Reynolds et al., 2002) for 1982–1998

indicate the central areas of the ocean temperature

record that can be most closely associated with each of

the indices (Fig. 1). SOI is an indicator of atmospheric

impacts of ENSO, computed as the standardized

difference between sea level pressure (SLP) measured

Fig. 1 Areas of SST represented by correlation values of r40.4

(Pearson’s coefficient) in association with the SOI, AO,

NINO112, and NINO4 indices for the period 1982–1998. Each

non-white pixel indicates a pixel location where the SST record

shows a significant correlation with at least one of the climate

indices, and the color of that pixel indicates which of the indices

has the highest correlation. Over 65% of global non-ice sea

coverage is represented by the four-color coverage.
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in Tahiti (171S, 1491W) and Darwin, Australia (131S,

1311E). The AO is derived from 1000 mb height

anomalies poleward of 201N (Thompson & Wallace,

1998). The NINO11 2 index is used to monitor SST over

the eastern tropical Pacific, delineated by the area

between 01S–101S and 901W–801W. The NINO4 index is

used to monitor SST over the area between 51N–51S and

1601E–1501W. Although the SOI is the most commonly

used of ENSO indicators, it is sometimes a poor

predictor of La Niña (cold phase) events, compared

with the NINO indices. Hence, it is necessary to use

several ENSO indicators to capture its global impacts.

The SOI and NINO indices are commonly used to

document warm-phases in ENSO, which are often

associated with above-average temperatures in the

northwestern half of the North American continent,

and below-average temperatures in the southeastern

half (Trenberth & Hurrell, 1994; Klein et al., 1999;

McCabe & Dettinger, 1999). There is also a pattern of

the warm-phase ENSO associated with above-average

precipitation over western coastal South America

(Vuille et al., 2000), the southern US, and northern

Mexico, plus below-average precipitation in south-

central Africa, northeastern South America, parts of

southern Asia and Australia, and in North America

from the Canadian Rockies to the Great Lakes region.

The AO is closely related to the North Atlantic

Oscillation (NAO – measured between the Icelandic

low (651N, 221W) and the Azores high pressure centers

from 391N, 91W to 361N, 61W; Walker & Bliss, 1932),

which, in its ‘high index’ warm phase can represent the

persistence of above-average temperatures over North

America and Europe, and below-average temperatures

variations over North Africa and the Middle East.

During winters when the AO index is high, anom-

alously low precipitation commonly occurs over the

Canadian Arctic, central and southern Europe, the

Mediterranean and Middle East. In contrast, anoma-

lously high precipitation occurs from Iceland though

Scandinavia (Hurrell, 1995).

For this analysis with climate index teleconnections,

terrestrial NPP and NEP fluxes have been computed

monthly (over the period 1982–1998) at a spatial

resolution of 0.5o latitude–longitude using the NASA–

CASA (Carnegie–Ames–Stanford) biosphere model

(Potter, 1999; Potter et al., 1999). NASA–CASA is a

numerical model of monthly fluxes of water, carbon,

and nitrogen in terrestrial ecosystems. Our estimates of

terrestrial NPP fluxes depend on inputs of global

satellite observations for land surface properties and

on gridded model drivers from interpolated weather

station records (New et al., 2000) distributed across all

the continental masses. Consequently, the NASA–

CASA predictions of terrestrial NPP carbon fluxes are

derived with no dependence whatsoever on climate

index data, nor on atmospheric circulation model

predictions of surface climate patterns.

Our fundamental approach to estimate terrestrial

NPP is to define optimal metabolic rates for carbon

fixation processes, and to adjust these rate values using

factors related to the limiting effects of time varying

solar radiation, air temperature (TEMP), precipitation

(PREC) (New et al., 2000), predicted soil moisture, and

land cover (DeFries & Townshend, 1994). Carbon (CO2)

fixed by vegetation as NPP is estimated in the

ecosystem model according to the time-varying

(monthly mean) fraction of photosynthetically active

radiation (FPAR) intercepted by plant canopies and a

light utilization efficiency term (emax). This product is

modified by stress factors for temperature (Ta) and

moisture (W) that vary over time and space. The emax

term is set uniformly at 0.39 g C (M J�1 PAR) (Potter

et al., 1993), a value that has been validated globally by

comparing predicted annual NPP to more than 1900

field estimates of NPP (Fig. 2). In separate studies,

interannual NPP fluxes from the CASA model were

reported (Behrenfeld et al., 2001) and validated against
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Fig. 2 Comparison of annual observed NPP to predicted

values from the NASA–CASA model (driven by 0.51 FPAR from

the satellite AVHRR and climate means from New et al., 2000).

The data set of more than 1900 observed NPP points was

compiled for the Ecosystem Model-Data Intercomparison

(EMDI) activity by the Global Primary Productivity Data

Initiative (GPPDI) working groups of the International Geo-

sphere Biosphere Program Data and Information System (IGBP-

DIS). Analysis of the residuals of this regression shows that

scatter around the least squares regression line is due as much to

uncertainties in scaling and inconsistencies in the ground-based

measurements of NPP reported in sub-tropical ecosystems as to

the prediction uncertainties represented in the NASA–CASA

model. A more complete analysis of the residuals is presented in

Potter et al. (2003).
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multi-year estimates of NPP from field stations and tree

rings (Malmström et al., 1997).

Our NASA–CASA model is designed to couple

seasonal patterns of NPP to soil heterotropic respiration

(Rh) of CO2 from soils worldwide (Potter, 1999).

First-order decay equations simulate exchanges of

decomposing plant residue (metabolic and structural

fractions) at the soil surface. The model also simulates

surface soil organic matter (SOM) fractions that

presumably vary in age and chemical composition.

Turnover of active (microbial biomass and labile

substrates), slow (chemically protected), and passive

(physically protected) fractions of the SOM are repre-

sented. NEP can be computed as NPP minus total Rh

fluxes, excluding the effects of small-scale fires and

other localized disturbances or vegetation regrowth

patterns on carbon fluxes (Schimel et al., 2001).

Whereas previous versions of the NASA–CASA

model (Potter et al., 1993, 1999) used a normalized

difference vegetation index (NDVI) to estimate FPAR,

the current model version instead relies upon canopy

radiative transfer algorithms (Knyazikhin et al., 1998),

which are designed to generate improved spatially

varying FPAR products as inputs to carbon flux

calculations. These radiative transfer algorithms, devel-

oped for the MODIS (moderate resolution imaging

spectroradiometer) aboard the NASA Terra platform,

account for attenuation of direct and diffuse incident

radiation by solving a three-dimensional formulation of

the radiative transfer process in vegetation canopies.

Monthly gridded composite data from spatially varying

channels 1 and 2 of the advanced very high-resolution

radiometer (AVHRR) have been processed according to

the MODIS radiative transfer algorithms and aggre-

gated over the global land surface to 0.51 grid

resolution, consistent with the NASA–CASA model

driver data for climate variables.

Land climate controls on ecosystem carbon fluxes

In this analysis, the Amazon region has been defined

broadly as the South American land area between the

northwestern corner of 61N, 771W and the southeastern

corner of 201S and 451W. Terrestrial NPP for this

Amazon regional coverage was estimated by our

NASA–CASA model to vary between 8.7 (in 1983)

and 9.8 Pg C (in 1997) yr�1, with a seasonal anomaly

range of about � 0.1 Pg C month�1 (Fig. 3a). The model

predicts a general increase in NPP for the region over

this 17-year time period of 1982–1998.

The regional predicted NEP flux for atmospheric CO2

varied between an annual source (to the atmosphere) of

�0.17 Pg C yr�1 in 1983 to a sink (from the atmosphere)

of 1 0.64 Pg C yr�1 in 1989, with a seasonal anomaly

range of up to � 0.1 Pg C month�1 (Fig. 3b). Our NASA–

CASA model results are consistent with the findings of

McGuire et al. (2001) and Vukicevic et al. (2001) that in

the tropical zones there is a net release of carbon to the

atmosphere during El Niño years, and a net uptake

during non El Niño years. This model result is

illustrated in the comparison between annual NEP

fluxes for 1997 and 1998 for the Amazon region (Fig. 4),

the years that bounded the last major El Niño event of

the century. For the relatively wet periods during 1997,

predicted annual NEP flux was a net sink of 0.55 Pg C.

For the El Niño event that started in late 1997, predicted

annual NEP flux in 1998 was �0.03 Pg C, mainly

because of the conversion of carbon sinks to sources

in the eastern portions of the basin.

Several previous studies of ecosystem modeling,

namely, Kindermann et al. (1996), Tian et al. (1998),

Prentice & Lloyd (1998), Asner et al. (2000), Potter et al.

(2001), and Foley et al. (2002), have examined how

interannual variations in climate affect the carbon

balance of the Amazon basin. As in the present study,

all of these models suggest that the net annual flux of

carbon by the basin is significantly correlated to ENSO

events. The Amazon basin is predicted to be a

significant carbon sink during La Niña events, and a

Fig. 3 Regionally summed carbon fluxes from the NASA–

CASA model as monthly anomalies from pre-1982 climate

results for Amazon (a) NPP and (b) NEP.
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carbon source during El Niño events. Moreover, most of

these modeling studies conclude that major variations

in the regional carbon balance are related chiefly to

changes in precipitation. The average El Niño event is

drier than normal, and the average La Niña period is

wetter in northern Amazonia. In southern Amazonia,

both El Niño and La Niña periods are drier than neutral

conditions.

Association rule analysis can offer further insights

into the types of dependencies that exist among

variables within a large model data set (Goodman &

Kruskal, 1954). Non-random associations between two

or more NASA–CASA model variables are reported

here using the w2-test (Stockburger, 1998). w2-values

greater than 3.84 (degrees of freedom5 1) indicate a

high probability (Po0.05) of non-random association

between anomalously low (LO) or anomalously high

(HI) monthly events for TEMP or PREC with either

NPP or NEP. We used an anomalous event threshold

value of 1.5 standard deviations or greater from the

long-term (1982–1998) monthly mean value. For our

analysis, association patterns are reported below on the

basis of frequency of occurrence within major global

vegetation types (DeFries & Townshend, 1994).

The main result from this analysis is that below

average PREC and above average TEMP can decrease

predicted NPP and NEP in the Amazon region and in

tropical ecosystems generally. Specifically, we find that

one of the strongest non-random associations in our

NASA–CASA results is that PREC-LO events co-occur

with NPP-LO and with NEP-LO events in evergreen

broadleaf forests, deciduous broadleaf forests, crop-

lands, and grassland savannas (Fig. 5). These events

occur mainly in drought-sensitive areas of tropical and

sub-tropical zones, and possibly in areas of major wild

fires that are associated with FPAR-LO events. We also

find that TEMP-HI events co-occur with NPP-LO

events for these same vegetation types, which can be

another indicator of drought stress effects on plant

carbon gains. It is possible, nevertheless, that the

inferred TEMP-HI association with NPP-LO could be

the result of statistical co-variation between high

temperature and low precipitation across the region.

We also examined the associations between positive

or negative anomalies in TEMP and anomalies in

predicted Rh fluxes of CO2 from soils. Results suggest

that above-average TEMP anomalies can lead to a

decrease in predicted Rh over the Amazon region and

in moist tropical ecosystems generally. This association

is most prominent in the northeastern section of the

Amazon basin region (map results not shown). We

hypothesize that decreases in soil moisture with higher

TEMP conditions are responsible for this association

with a decrease in predicted Rh fluxes.

Time series teleconnections

As a first step in analysis of global teleconnections, we

examined the underlying empirical relationships be-

tween land climate records, those used as input to the

Fig. 4 Predicted annual NEP from the NASA–CASA model for the Amazon region in 1997 and 1998. Positive values (red) represent net

sink fluxes of atmospheric CO2 into terrestrial ecosystems, where negative values (blue) represent net source fluxes of atmospheric CO2

from terrestrial ecosystems.
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NASA–CASA model, and the selected climate indices.

We address the questions of where and how are land

surface temperature and precipitation time series used

as model input variables correlated with ENSO and

AO. Our analysis here covers a long-term (1958–1998)

historical record to assess the impacts of ENSO and AO

on the Amazon region, rather than concentrating on

individual ENSO events of the past 20 years. By

considering several decades of climate cycles, we can

more accurately assess the impacts of climate events on

the Amazon basin, and their statistical significance.

Serial correlation (i.e., autocorrelation) needs to be

considered when testing significance of the association

between two time series. We have determined the serial

correlation of climate indices at all possible lag times up

to 6 months. SOI anomalies have a low autocorrelation

function (o0.3) at lag times greater than about 6

months (using index data from 1958–1995). The same

is true for the NINO11 2 index anomalies. For the

NAO/AO anomalies, the autocorrelation function is

o0.1 at lag times greater than 3 months. For our

predicted NPP anomalies, the autocorrelation function

is o0.1 at lag times greater than 6 months. Based on

these results, we accepted degrees of freedom (d.f.) for

the climate index time series correlations with NPP

fluxes to be d.f.5 32 (34 ‘seasons’ of 6 months duration

in a 17-year window, minus 2 for a two-tailed test of

significance). For the purposes of demonstrating a signi-

ficant association with measured climate index values

at d.f.5 32, Pearson’s correlation coefficient (r)40.34

carries a relatively high confidence level of Po0.05.

When dealing with long-term climate correlations and

d.f.475 (for roughly 40 years of global records), values

of r40.2 carry the same confidence level of Po0.05.

Like Mason & Goddard (2001) and Foley et al. (2002),

we report on an analysis of the long-term climate data

from the Climate Research Unit of the University of

East Anglia, Norwich (New et al., 2000; hereinafter

referred to as the CRU05 dataset). CRU05 is a global,

monthly mean data set of TEMP, PREC, humidity,

and cloudiness at 0.51 by 0.51 latitude/longitude

resolution, for the period 1901–1995. The climate record

is most reliable after the 1940s; we therefore restricted

our analysis to the 40-year period between 1958 and

1998.

Correlations between the time series anomalies of the

SOI, AO, NINO11 2, and NINO4 climate indices and

0.51 PREC or TEMP on land were identified. The first

step in this analysis was the conversion of all time

series to Z-score values, which can be used to specify

the relative statistical location of each monthly value

within the 40-year population distribution. The numerical

Fig. 5 Locations of co-occurrence between anomalously low (LO) monthly PREC and NASA–CASA predicted NEP from 1982 to 1998.

An anomalous event threshold value was defined as 1.5 standard deviations or greater from the long-term (1982–1998) monthly mean

value. Each non-white pixel indicates a location where NEP-LO co-occurs in the time series with PREC-LO and that the color of that

pixel indicates the vegetation type at that location.
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Z-score indicates the distance from the 40-year mean

as the number of standard deviations above or below

the mean. The difference between the t-statistic and the

Z-score is that the t-test uses a sample standard

deviation, whereas the Z-score uses population stan-

dard deviation.

Results show that CRU05 land TEMP records for the

period 1958–1998 were strongly correlated with SOI

throughout the entire Amazon region, with the excep-

tion of the extreme western portions of the Brazilian

Amazon mainly located between 61S and 141S (Fig. 6a).

El Niño events are systematically warmer and La Niña

events are systematically cooler in the Amazon region

than neutral years in the SOI record. CRU05 land TEMP

records were strongly correlated with NINO4 across the

entire northern hemisphere portion of the Amazon land

region (map not shown). The only areas showing strong

correlation of TEMP with either NINO11 2 or AO were

located in the extreme northeastern corner of the

Amazon region (maps not shown).

On a regional basis, land PREC correlations with all

four climate indices were generally strongest during the

northern hemisphere winter (December–January–

February, DJF) and autumn (September–October–

November, SON) months, compared with the spring

(March–April–May, MAM) and summer (June–July–

August, JJA) months (Trenberth & Hurrell, 1994;

Hurrell, 1995). Results show that CRU05 land DJF

PREC records for the period 1958–1998 were most

strongly correlated with SOI in the northeastern

Amazon region between 31N and 71S (Fig. 6b). Our

SOI correlation results are consistent with those of

Halpert & Ropelewski (1992), Mason & Goddard (2001),

Marengo et al. (2001), and Foley et al. (2002), who

reported that the average El Niño is dryer than neutral

conditions in the Amazon region, while the average La

Niña is wetter. CRU05 land PREC records were

strongly correlated with both NINO11 2 and NINO4

indices in the northeastern corner of the Amazon region

(maps not shown). The strongest DJF PREC correlations

with AO were located the extreme western and south-

eastern portions of the Amazon region (Fig. 6c).

Turning to carbon flux correlations, we used match-

ing monthly records for the period of 1982–1998 to

investigate associations between the time series anoma-

lies of the climate indices and predicted carbon fluxes

on land from the NASA–CASA model. The 12-month

running mean was computed to deseasonalize the

NASA–CASA model time series. An example of the

close association between SOI and predicted land

carbon fluxes is shown in Fig. 7 for a location in the

eastern Amazon (at 51 S, 501W), in Pará about 100 km

Fig. 6 Regional extent of Pearson’s coefficient for correlation r40.2 of CRU05 climate with climate indices (1958–98) (a) TEMP with

SOI, (b) PREC with SOI, and (c) PREC with AO.
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Fig. 7 Time-series correlation of anomalies of 12-month run-

ning average SOI with predicted NEP at 51S, 501W, r5 1 0.79.
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northwest of the city of Marabá. Both the SOI and

modeled carbon fluxes show low points in 1982–1983,

1986–1987, 1992, and 1997–1998, with an time series

correlation of r5 0.79 for SOI with NEP, and r5 0.85 for

the correlation of SOI with NPP (Po0.05). We find that

a seasonal phase shift in climate index lead times of up

to 6 months commonly improved correlations with the

NPP and NEP time series anomalies. The 2–6 month

lead between the climate indices and NEP results

principally from phase differences between the climate

indices and the model inputs (TEMP, PREC, and FPAR)

used to generate NEP.

A marked similarity can be seen between the 12-

month moving average PREC and predicted NPP for

this location at 51 S, 501W (Fig. 8), compared with the

weaker relationship between the moving average FPAR

and predicted NPP. This is most obvious in the periods

after 1995, when FPAR steadily increases, while high

interannual variability in PREC prevents NPP from

following the same upward pattern as FPAR. Predicted

Rh fluxes of CO2 from soil at this location generally lag

NPP responses to PREC by 1 or 2 years and are more

variable from month to month or season to season

within a year.

Fig. 8 Time-series of raw and 12-month running average (a) FPAR, (b) PREC, (c) predicted NPP carbon, and (d) predicted Rh-CO2 at 51

S, 501 W.
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An example of the association between AO and

predicted land carbon fluxes is shown in Fig. 9 for a

location in the southern Amazon (at 151 S, 551W), in

Mato Grosso about 100 km northeast of the city of

Cuiabá. The AO index and NEP fluxes both show rapid

increases in 1985–1986 and 1988–1989, which can be

attributed to increasing precipitation and temperature

on land during these transition periods. We find a time

series correlation at this location of r5 0.41 (Po0.05) for

AO with NEP and also with observed FPAR. The time

series correlation for AO with NPP was slightly higher

at r5 0.55.

Regional correlation maps (Fig. 10a–c) show the areas

where r40.34 for associations of the SOI, NINO11 2,

and AO indices with our predicted NEP fluxes for the

period 1982–1998. Seasonality in all time series records

was removed before this analysis by computing a 12-

month moving average. We find that deseasonalized

NEP fluxes have strong correlations with SOI and

NINO11 2 for 59% and 47%, of the Amazon regional

area, respectively. Predicted NEP fluxes have strong

correlations with AO for 20% of the regional area. The

AO regional correlation with predicted NEP has a

completely different coverage pattern than the NEP

correlation pattern with either SOI or NINO11 2,

which are similar in many respects.

For deseasonalized NPP anomalies, 45% and 19% of

the Amazon regional area have strong correlations with

SOI and AO indices, respectively. In comparison to these

NASA–CASA model outputs, the FPAR input time

series of deseasonalized anomalies have strong correla-

tions with SOI and AO over 25% and 17% of the

Amazon regional area, respectively. This implies that

climate (PREC and TEMP) together with FPAR inputs to

the NASA–CASA model are strongly influencing carbon

flux correlations with SOI, whereas FPAR alone accounts

for the strongest carbon flux correlations with AO.

The relative impacts of PREC and TEMP time series

inputs (to the NASA–CASA carbon model) on correla-

tions between climate indices SOI and AO with our

predicted NEP fluxes can be examined further by

comparison of Figs 6 and 10. For example, we find that

nearly 89% of total Amazon regional area shown in Fig.

10a as having strong correlation of NEP with SOI also

shows strong correlation of TEMP with SOI (Fig. 6a).

This includes practically all of the forested area in the

eastern half of the region. In comparison, 24% of total

Amazon regional area shown in Fig. 10a as having

strong correlation of NEP with SOI also shows strong

correlation of DJF PREC with SOI (Fig. 6b), which is

composed mainly of the northeastern forest area of the

region. We can conclude therefore that the strongest

correlations of predicted NEP with SOI over the 17-year

time series can be attributed to the combined effects of

PREC and TEMP inputs to our ecosystem model, but

that the effects of ENSO-related TEMP variations alone

on predicted NEP cannot be overlooked, especially in

the southeastern forest area of the region.

In contrast to NEP and SOI results, we find that just

6% of the total Amazon regional area shown in Fig. 10c
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−3

−2

−1

0

1

2

3
NEP
AO

Fig. 9 Time-series correlation of anomalies of 12-month run-

ning average AO with predicted NEP at 151S, 551W, r5 1 0.41.

Fig. 10 Regional extent of Pearson’s coefficient for correlation r40.34 of predicted terrestrial NEP (1982–98) with (a) SOI, (b)

NINO11 2, and (c) AO indices.
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as having strong correlation of NEP with AO also

shows strong correlation of DJF PREC with AO (Fig.

6c), while only 2% of total land area shown in Fig. 10c

shows strong correlation of TEMP with AO (map not

shown). Consequently, the great majority of the

regional area shown in Fig. 10c as having strong NEP

correlations with AO must result from FPAR inputs to

the NASA–CASA carbon model, which also correlate

strongly with AO over extensive areas of central and

southern Brazil.

Discussion and conclusions

Ecosystem modeling studies like those of Tian et al.

(1998) and Foley et al. (2002) have implied that major

variations in the regional carbon balance of the Amazon

are related chiefly to ENSO precipitation patterns.

While our study results are consistent with these

previous findings, mainly for the northern portion of

the Amazon region, this analysis suggests that tem-

perature effects of ENSO cycles and AO-related climate

events can also have notable impacts on Amazon

carbon fluxes over decade-long time periods. Specifi-

cally, NASA–CASA model anomalies from 1982–1998

for NPP and NEP over large areas of the Amazon

region east of 601W longitude are strongly correlated

with the SOI. As the means to explain NEP anomalies,

reasonably strong TEMP correlations with SOI are more

widespread regionally than are strong PREC correla-

tions with SOI. It is worth noting that NASA–CASA has

the potential to generate results that are different than

the two other models cited above, because NASA–

CASA relies on satellite data as an input. The AHVRR

time series is an observation of the actual land

vegetation dynamics, which is lacking in the two other

cited models, and which can be sensitive to variability

on temperature as well as precipitation.

The tropical inland areas of central and southern

Brazil that show strong correlations for FPAR, NPP, and

NEP with AO (Fig. 9c) are noteworthy, particularly

because these patterns in the 17-year satellite record of

measured FPAR patterns can corroborate the findings

of atmospheric simulation studies that have recently

implied a strong influence of southern Atlantic SST

anomalies on the NAO, with concurrent impacts on

southern Amazon rainfall patterns (Robertson et al.,

2000). Our results here are an additional indicator of

circulation and heating patterns associated with the

South American monsoon system (SAMS), which may

exert an important influence on the boreal winter

subtropical jet over eastern North America, possibly

through changes Amazon rainfall and regional Hadley

circulations (Nogués-Paegle et al., 1998). Several pre-

vious studies have addressed tropical North Atlantic

variability, which directly impacts the intertropical con-

vergence zone (ITCZ) (Enfield & Mayer, 1997; Sarava-

nan & Chang, 2000), and by the NAO (Namias, 1972).

Many new studies are needed to address such vari-

ability over the South Atlantic, and the combined asso-

ciations of ENSO, NAO, and the Antarctic Oscillation

(AAO) on storm tracks over central and southern Brazil.

Ecosystem model results that are presented in the

context of teleconnections with global climate processes

can aid in understanding the mechanisms for sink

fluxes of CO2 in the terrestrial biosphere. Uncertainties

remain to a large degree because the heterogeneity of

land cover and ecosystem exchange processes have not

been measured and mapped in adequate detail to

determine precise geographic differences in sink/

source controls (USGCRP, 1999; Watson et al., 2000).

Nonetheless, by a continuous process of integration and

evaluation of ecosystem model predictions with

ground-based measurements of carbon fluxes and

remote sensing, such as those ongoing within the LBA

program, these uncertainties are being narrowed

rapidly, and the role of Amazonia in global climate

change can be elucidated.
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