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Abstract. A spatial time series dataset is a collection of time series,
each referencing a location in a common spatial framework. Correla-
tion analysis is often used to identify pairs of potentially interacting
elements from the cross product of two spatial time series datasets (the
two datasets may be the same). However, the computational cost of
correlation analysis is very high when the dimension of the time series
and the number of locations in the spatial frameworks are large. In this
paper, we use a spatial autocorrelation-based search tree structure to
propose new processing strategies for correlation-based similarity range
queries and similarity joins. We provide a preliminary evaluation of the
proposed strategies using algebraic cost models and experimental studies
with Earth science datasets.

1 Introduction

Analysis of spatio-temporal datasets [17, 19, 20, 11] collected by satellites, sensor
nets, retailers, mobile device servers, and medical instruments on a daily basis
is important for many application domains such as epidemiology, ecology, cli-
matology, and census statistics. The development of efficient tools [2, 6, 12] to
explore these datasets, the focus of this work, is crucial to organizations which
make decisions based on large spatio-temporal datasets.

A spatial framework [22] consists of a collection of locations and a neighbor
relationship. A time series is a sequence of observations taken sequentially in
time [4]. A spatial time series dataset is a collection of time series, each refer-
encing a location in a common spatial framework. For example, the collection
of global daily temperature measurements for the last 10 years is a spatial time
series dataset over a degree-by-degree latitude-longitude grid spatial framework
on the surface of the Earth.
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Correlation analysis is important to identify potentially interacting pairs of
time series across two spatial time series datasets. A strongly correlated pair of
time series indicates potential movement in one series when the other time series
moves. However, a correlation analysis across two spatial time series datasets is
computationally expensive when the dimension of the time series and number
of locations in the spaces are large. The computational cost can be reduced by
reducing the time series dimensionality or reducing the number of time series
pairs to be tested, or both. Time series dimensionality reduction techniques
include discrete Fourier transformation [2], discrete wavelet transformation [6],
and singular vector decomposition [9].

Our work focuses on reducing the number of time series pairs to be tested
by exploring spatial autocorrelation. Spatial time series datasets comply with
Tobler’s first law of geography: everything is related to everything else but nearby
things are more related than distant things [21]. In other words, the values of
attributes of nearby spatial objects tend to systematically affect each other. In
spatial statistics, the area devoted to the analysis of this spatial property is
called spatial autocorrelation analysis [7]. We have proposed a naive uniform-
tile cone-based approach for correlation-based similarity joins in our previous
work [23]. This approach groups together time series in spatial proximity within
each dataset using a uniform grid with tiles of fixed size. The number of pairs of
time series can be reduced by using a uniform-tile cone-level join as a filtering
step. All pairs of elements, e.g., the cross product of the two uniform-tile cones,
which cannot possibly be highly correlated based on the correlation range of the
two tile cones are pruned. However, the uniform tile cone approach is vulnerable
because spatial heterogeneity may make it ineffective.

In this paper, we use a spatial autocorrelation-based search tree to solve the
problems of correlation-based similarity range queries and similarity joins on spa-
tial time series datasets. The proposed approach divides a collection of time series
into hierarchies based on spatial autocorrelation to facilitate similarity queries
and joins. We propose processing strategies for correlation-based similarity range
queries and similarity joins using the proposed spatial autocorrelation-based
search trees. Algebraic cost models are proposed and the evaluation and exper-
iments with Earth science data [15] show that the performance of the similarity
range queries and joins processing strategies using the spatial autocorrelation-
based search tree structure often saves a large fraction of computational cost.

An Illustrative Application Domain

NASA Earth observation systems currently generate a large sequence of global
snapshots of the Earth, including various atmospheric, land, and ocean measure-
ments such as sea surface temperature (SST), pressure, precipitation, and Net
Primary Production (NPP) ?. These data are spatial time series data in nature.
? NPP is the net photosynthetic accumulation of carbon by plants. Keeping track

of NPP is important because it includes the food source of humans and all other
organisms and thus, sudden changes in the NPP of a region can have a direct impact
on the regional ecology.



(a) (Reproduced from [10]) World-
wide climatic impacts of warm El
Nino events during the northern
hemisphere winter
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Fig. 1. El Nino Effects and Cones

The climate of the Earth’s land surface is strongly influenced by the behavior
of the oceans. Simultaneous variations in climate and related processes over
widely separated points on the Earth are called teleconnections. For example,
every three to seven years, an El Nino event [1], i.e., the anomalous warming
of the eastern tropical region of the Pacific Ocean, may last for months, having
significant economic and atmospheric consequences worldwide. El Nino has been
linked to climate phenomena such as droughts in Australia and heavy rainfall
along the eastern coast of South America, as shown in Figure 1 (a). D indicates
drought, R indicates unusually high rainfall (not necessarily unusually intense
rainfall) and W indicates abnormally warm periods. To investigate such land-
sea teleconnections, time series correlation analysis across the land and ocean is
often used to reveal the relationship of measurements of observations.

For example, the identification of teleconnections between Minneapolis and
the eastern tropical region of the Pacific Ocean would help Earth scientists to
better understand and predict the influence of El Nino in Minneapolis. In our
example, the query time series is the monthly NPP data in Minneapolis from
1982 to 1993, denoted as Tq. The minimal correlation threshold is denoted as θ.
This is a correlation-based similarity range query to retrieve all highly correlated
SST time series in the eastern tropical region of the Pacific Ocean with the NPP
time series in Minneapolis. We carry out the range query to retrieve all time
series which correlate with Tq over θ in the spatial time series data S, which
contain all the SST time series data in the eastern tropical region of the Pacific
Ocean from 1982 to 1993. The table design of S could be represented as shown
in Table 1. This query is represented using SQL as follows:

select SST from S where correlation(SST,Tq) ≥ θ



S: SST of the Eastern Pacific Ocean

Longitude Latitude SST (82-93)

N: NPP of Minnesota

Longitude Latitude NPP (82-93)
Table 1. Tables Schema for Table S and Table N

Another interesting example query is to retrieve all the highly correlated
SST time series in the eastern tropical region of the Pacific with the time series
of NPP in all of Minnesota. This query is a correlation-based similarity join
between the NPP of Minnesota land grids and the SST in the eastern tropical
region of the Pacific. The table design of Minnesota NPP time series data from
1982 to 1993, N , is shown in Table 1. The query is represented using SQL as
follows:

select NPP, SST from N, S where correlation(NPP,SST) ≥ θ

Due to large amount of data available, the performance of naive nested loop
algorithms is not sufficient to satisfy the increasing demands to efficiently process
correlation-based similarity queries in large spatial time series datasets. We pro-
pose algorithms that use spatial autocorrelation-based search trees to facilitate
the correlation-based similarity query processing in spatial time series data.

Scope and Outline

In this paper we choose a simple quad-tree like structure as the search tree due
to its simplicity. R-tree, k-d tree, z-ordering tree and their variations [16, 19, 18]
could be other possible candidates of the search tree. However, the comparison
of these spatial data structures is beyond the scope of this paper. We focus on
the strategies for correlation-based similarity queries in spatial time series data,
and the computation saving methods we examine involve reduction of the time
series pairs to be tested. Query processing using other similarity measures and
computation saving methods based on non-spatial properties ( e.g. time series
power spectrum [2, 6, 9]) are beyond the scope of the paper and will be addressed
in future work.

The rest of the paper is organized as follows. In Section 2, the basic concepts
and lemmas related to the cone definition and boundaries are provided. Section 3
describes the formation of the spatial autocorrelation-based search tree and the
correlation-based similarity range query and join strategies using the proposed
spatial autocorrelation-based search tree. The cost models are discussed in Sec-
tion 4. Section 5 presents the experimental design and results. We summarize
our work and discuss future directions in Section 6.

2 Basic Concepts

Let x = 〈x1, x2, . . . , xm〉 and y = 〈y1, y2, . . . , ym〉 be two time series of length
m. The correlation coefficient [5] of the two time series is defined as: corr(x, y) =
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unit sphere. Similarly, ŷ is also located in a multi-dimensional unit sphere. Based
on the definition of corr(x, y), we have corr(x, y) = x̂· ŷ = cos(∠(x̂, ŷ)). The
correlation of two time series is directly related to the angle between the two
time series in the multi-dimensional unit sphere. Finding pairs of time series
with an absolute value of correlation above the user given minimal correlation
threshold θ is equivalent to finding pairs of time series x̂ and ŷ on the unit
multi-dimensional sphere with an angle in the range of [0, θa] or [180◦−θa, 180◦]
[23].

A cone is a set of time series in a multi-dimensional unit sphere and is char-
acterized by two parameters, the center and the span of the cone. The center of
the cone is the mean of all the time series in the cone. The span τ of the cone is
the maximal angle between any time series in the cone and the cone center. The
largest angle(∠P1OQ1) between two cones C1 and C2 is denoted as γmax and
the smallest angle (∠P2OQ2) is denoted as γmin, as illustrated in Figure 1 (b).
We have proved that if γmax and γmin are in specific ranges, the absolute value
of the correlation of any pair of time series from the two cones are all above θ
(or below θ) [23]. Thus all pairs of time series between the two cones satisfy
(or dissatisfy) the minimal correlation threshold. To be more specific, if we let
C1 and C2 be two cones from the multi-dimensional unit sphere structure and
let x̂ and ŷ be any two time series from the two cones respectively, we have the
following properties(please refer to [23] for proof details):

1. If 0 ≤ γmax ≤ θa, then 0 ≤ ∠(x̂, ŷ) ≤ θa.
2. If 180◦ − θa ≤ γmin ≤ 180◦, then 180◦ − θa ≤ ∠(x̂, ŷ) ≤ 180◦.
3. If θa ≤ γmin ≤ 180◦ and γmin ≤ γmax ≤ 180◦ − θa, then θa ≤ ∠(x̂, ŷ) ≤

180◦ − θa

If either of the first two conditions is satisfied, {C1, C2} is called an All-True
cone pair (All-True lemma). If the third condition is satisfied, {C1, C2} is called
an All-False cone pair (All-False lemma).

3 Strategies for Correlation-Based Similarity Queries

In this section, we describe the formation of a spatial autocorrelation-based
search tree and strategies for processing correlation-based similarity range queries
and joins using the proposed search tree.

3.1 Spatial Autocorrelation-Based Search Tree Formation

We explore spatial autocorrelation, i.e., the influence of neighboring regions on
each other, to form a search tree. Search tree structures have been widely used



in traditional DBMS (e.g. B-tree and B+ tree) and spatial DBMS (quad-tree,
R-tree, R+-tree, R*-tree, and R-link tree [16, 19] ). To fully exploit the spatial
autocorrelation property, there are three major criteria for choosing a tree on
the spatial time series datasets. First, a spatial tree structure is preferred to
incorporate the spatial component of the datasets. Second, during the tree for-
mation the time series calculations such as mean and span should be minimized
while still need to maintain a high correlation (high clustering) among time series
within a tree node. Third, threaded leaves where leaves are linked are preferred
to support sequential scan of files which are useful for high selectivity ratio cor-
relation queries. Other desired properties include depth balances of a tree and
incremental updates when the time series component changes.

Algorithm 1 Spatial Similarity Search Tree Formation
Input: 1) S = {s1, s2, . . . , sn} : n spatial referenced time series

where each instance references a spatial framework SF;
2) a maximum threshold of cone angle τmax

Output: Similarity Search Tree with Threaded Leaves

Method:
divide SF into a collection of disjoint cells C
/* each cell is mapped to a cone. */

index = 1;

while (index < C.size)
C(index).cener = Calculate Center(C, index);

/* cone center is the average time series within the cone. */

C(index).angle = Calculate Span(C, index);

/* cone span is the max angle between any time series and the

cone center within the cone. */

if ( C(index).angle > τmax )

split cell C(index) into four quarters C11, C12,C13,C14;

insert four quarters into C at position index + 1;
set C11, C12,C13,C14 as C(index)’s children;

else

index ++ ;

insert C(index) at the end of the threaded leaf list;

return C;

We choose a simple quad tree with threaded leaves which satisfies the three
criteria. Other tree structures are also possible and will be explored in future
work. As shown in Algorithm 1, the space is first divided into a collection
of disjoint cells with a coarse starting resolution. Each cell represents a cone
in the multi-dimensional unit sphere representation and includes multiple time
series . Then the center and span are calculated to characterize each cone. When
the cone span exceeds the maximal span threshold, this cone is split into four
quarters. Each quarter is checked and split recursively until the cone span is less
than the maximal span.



The maximal span threshold can be estimated by using an algebraic formula
analyzed as follows. Given a minimal correlation threshold θ (0 < θ < 1), γmax =
δ + τ1 + τ2 and γmin = δ − τ1 − τ2, where δ is the angle between the centers
of two cones, and the τ1 and τ2 are the spans of the two cones respectively. For
simplicity, suppose τ1 ' τ2 = τ . We have the following two properties (Please
refer to [23] for proof details):

1. Given a minimal correlation threshold θ, if a pair of cones both with span τ

is an All-True cone pair, then τ < arccos(θ)
2 .

2. Given a minimal correlation threshold θ, if a pair of cones both with span τ

is an All-False cone pair, then τ < 180◦
4 − arccos(θ)

2 .

We use the above two properties to develop a heuristic to bound the maximal
span of a cone. The maximal span of a cone is set to be the minimal of the arccos(θ)

2

and 180◦
4 − arccos(θ)

2 .
The starting resolution can be investigated by using a spatial correlogram [7].

A spatial correlogram plots the average correlation of pairs of spatial time se-
ries with the same spatial distance against the spatial distances of those pairs.
We choose the starting resolution size whose average correlation is close to the
correlation which corresponds to min( arccos(θ)

2 , 180◦
4 − arccos(θ)

2 ).
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Fig. 2. An Illustrative Example for Spatial Autocorrelation-Based Search Tree Forma-
tion

Example 1 (Spatial Autocorrelation-Based Search Tree Formation). Figure 2 il-
lustrates the spatial autocorrelation-based search tree formation for two datasets,
namely land and ocean. Each land/ocean framework consists of 16 locations on
the starting resolution. The time series of length m in a location s is denoted
as F (s) = F1(s), F2(s), . . . , Fi(s), . . . Fm(s). Figure 2 only depicts a time series
for m = 2. Each arrow in a location s of ocean or land represents the vector
< F1(s), F2(s) > normalized to the two dimensional unit sphere. Since the di-
mension of the time series is two, the multi-dimensional unit sphere reduces to
a unit circle, as shown in Figure 2 (b) and (d).



Both land and ocean cells are further split into four quarters respectively
due to the spatial heterogeneity in the cell. The land is partitioned to L1 − L4

and the ocean is partitioned to O1 −O4, as shown in Figure 2 (a) and (c). Each
quarter represents a cone in the multi-dimensional unit sphere. For example, the
patch L2 in Figure 2 (a) matches L2 in the circle in Figure 2 (b). All leaves are
threaded, assuming that L1 to L4 and O1 to O4 are all leaves.

3.2 Strategies for Similarity Range Queries and Similarity Joins

The first step is to pre-process the raw data to the multi-dimensional unit
sphere representation. The second step, formation of spatial autocorrelation-
based search trees involves grouping similar time series into hierarchical cones
using the one described in Algorithm 1. The query processing functions called
may be related to similarity range query or similarity join, depending on the
query types.

Algorithm 2 Correlation-Based Similarity Query Algorithm
Input: 1) S1 = {s1

1, s
1
2, . . . , s1

n1}: n1 spatial referenced time series

where each instance references a spatial framework SF1;

2) S2 = {s2
1, s

2
2, . . . , s2

n2}: n2 spatial referenced time series

where each instance references a spatial framework SF2;
3) a user defined correlation threshold θ;
4) query time series denote Tq ;

5) a maximum threshold of cone angle τ1
max

6) a maximum threshold of cone angle τ2
max

Output: pairs of time series each from S1 and S2 or Tq and S2 with

correlations above θ;
Method:

Pre-processing(S1); Pre-processing(S2); (1)

T1 = Spatial Similarity Search Tree Formation(S1, τ1
max ); (2)

T2 = Spatial Similarity Search Tree Formation(S2, τ2
max ); (3)

if range query (4)

/* assume to find highly correlated time series with Tq in S2.*/ (5)

Similarity Range Query(T2,Tq, θ); (6)

else if similarity join (7)

Similarity Join(T1,T2,θ); (8)

Strategies for Range Queries Given a query time series Tq, we want to search
all highly correlated time series from the spatial time series dataset S2 with Tq.
In general, strategies to process range queries include scan-based approaches
and search tree-based approaches [8]. The scan-based approaches probe each
individual nodes one by one. The search tree-based approach starts from the
root of the tree and branches to a node’s children only when certain conditions



are satisfied, e.g., the minimal bounding box of the child contains the querying
element.

Algorithm 3 Similarity Range Query
Input: 1) T: a spatial autocorrelation-based search tree with

threaded leaves;
2) Tq: the query time series denote;

3) a user defined correlation threshold θ;
Output: all time series each from S whose correlations with Tq are

above θ;
Method:

traverse T; for each cone c on the route do (1)

Filter F lag = Cone-level Join(Tq, c, θ); (2)

if (Filter F lag == ALL TRUE) (3)

output all time series in the cone c (4)

else if (Filter F lag != ALL FALSE) (5)

if c is a leaf node (6)

for all pair Tq and s from c do (7)

High Corr F lag = Instance-level Join(Tq,s, θ); (8)

if (High Corr F lag) output s; (9)

else for each c′ of c’s children do (10)

Similarity Range Query(c′, Tq, θ) (11)

We adopt two common strategies to traverse the spatial autocorrelation-
based search tree (step 1), namely threaded-leaves-only strategy and tree-based
strategy. Note that the query time series Tq can be treated as a cone with a
cone span 0. The threaded-leaves-only traversal only visits all the leaf nodes of
the tree. The pairs of time series formed by T1 and each time series in a leaf
node which satisfies the All-True lemma will be output. The pairs of time series
formed by T1 and each time series in a leaf node which satisfies the All-False
lemma will be ignored. An individual time series in a leave node which fails both
All-True and All-False lemmas will be visited. The tree-based traversal starts
from the root and checks the All-True and All-False lemmas. The children of
non-leaf nodes which fail both All-True and All-False lemmas will be visited
until a leaf node is reached. For leaf nodes, the process is the same as that in
the threaded-leaves-only traversal.

Example 2 (A Similarity Range Query). The range query with respect to O11

and L in Figure 2 (a) and (c) is applied as shown in Table 2. For the threaded-
leaves-only traversal, all leaf cones are checked against O11 for correlation. The
total cost is the sum of 4, which is the filtering cost, and 4, which is the refinement
cost. For the tree-based traversal, O11 is first checked with L against the All-
True and All-False lemmas. If both of them fail, all of L’s four children, which
are all leaf nodes, are checked. Three of them satisfy the All-False Lemmas and
one needs refinement where individual time series are checked against O11 for



correlation. The total correlation computation is the sum of 5 and 4, which is
the refinement cost. For this particular example, the tree-based traversal is more
expensive than the threaded-leaves-only traversal.

Tree-Based Traversal Threaded-leaves-only Traversal

Ocean-Land Filtering Refinement Ocean-Land Filtering Refinement

O11 − L No No
O11 − L1 No 4 O11 − L1 No 4
O11 − L2 All-False O11 − L2 All-False
O11 − L3 All-False O11 − L2 All-False
O11 − L4 All-False O11 − L2 All-False
Table 2. The Range Query with Respect to O11 in Example Data

Strategies for Similarity Joins Spatial join operations are usually divided
into a filter step and a refinement step [19] to efficiently process complex spatial
data types such as point collections. In the filter step, the spatial objects are
represented by simpler approximations such as the MBR (Minimum Bounding
Rectangle). There are several well-known algorithms, such as plane sweep [3],
space partition [13] and tree matching [14], which can then be used for com-
puting the spatial join of MBRs using the overlap relationship; the answers from
this test form the candidate solution set. In the refinement step, the exact ge-
ometry of each element from the candidate set and the exact spatial predicates
are examined along with the combinatorial predicate to obtain the final result.

For a join between two spatial autocorrelation-based search trees, we traverse
one tree in a threaded-leaves-only manner and traverse the other tree in either
a threaded-leaves-only manner (single loop join) or a tree-based manner(nested
loop join). Other traversal combinations such as tree matching are also possible
but are beyond the scope of this paper; they will be addressed in future work.
For each leaf c1 in the first search tree, a process similar to the range query with
respect to c1 is carried out.

Example 3 (A Similarity Join). The join operation between the cones in Figure 2
(a) and (c) is applied as shown in Table 3. For the nested loop join, each leaf
ocean cone is checked with the land cones. The cost of the threaded-leaves-only
traversal is the sum of 16, which is the filtering cost, and 2 × 16, which is the
refinement cost. For the single loop join, each ocean cone is checked with the
land cones starting with the root L. Its children will be visited only if neither
the All-True or All-False lemmas turns out to be true. As can be seen, some
All-False cone pairs and All-True cone pairs are detected in the non-leaf nodes
and their descendents are not visited at all. The cost of the tree-based traversal
is the sum of 12, which is the filtering cost, and 2× 16, which is the refinement
cost.



Algorithm 4 Similarity Join
Input: 1) T 1: a spatial autocorrelation-based search tree with

threaded leaves ;
2) T 2: a spatial autocorrelation-based search tree with

threaded leaves;
3) a user defined correlation threshold θ;

Output: all pairs of time series each from leaves of C1 and C2 with

correlations above θ;
Method:

traverse T1 via threaded leaves; for each c1 from T1 do (1)

traverse T2; for each c2 T2 do (2)

Filter F lag = Cone-level Join(c1, c2, θ); (3)

if (Filter F lag == ALL TRUE) (4)

output all pairs in the two cones (5)

else if (Filter F lag != ALL FALSE) (6)

if c2 is a leaf node (7)

for all pair s1 from c1 and s from c do (8)

High Corr F lag = Instance-level Join(s1,s2, θ); (9)

if (High Corr F lag) output s1 and s2; (10)

else for each c′ of c’s children do (11)

Similarity Join(c1, c
′, θ) (12)

Tree-Based Traversal Threaded-leaves-only Traversal

Ocean-Land Filtering Refinement Ocean-Land Filtering Refinement

O1 − L No
O1 − L1 No 16 O1 − L1 No 16
O1 − L2 All-False O1 − L2 All-False
O1 − L3 All-False O1 − L3 All-False
O1 − L4 All-False O1 − L4 All-False

O2 − L All-False
O2 − L1 All-True
O2 − L2 All-True
O2 − L3 All-True
O2 − L4 All-True

O3 − L No
O3 − L1 All-True O3 − L1 All-True
O3 − L2 All-True O3 − L2 All-True
O3 − L3 All-True O3 − L3 All-True
O3 − L4 No 16 O3 − L4 No 16

O4 − L4 All-True
O4 − L1 All-True
O4 − L2 All-True
O4 − L3 All-True
O4 − L4 All-True

Table 3. Join in Example Data



Lemma 1 (Completeness and Correctness of the Range Query Algo-
rithm). The Similarity Range Query algorithm is complete and correct.

Proof Sketch:
Given a query time series Tq, for the threaded-leaves-only traversal, a pair of
time series Tq and T ′ having a correlation value greater than the user given
threshold can only be dismissed when it is in a pair of cones satisfying the All-
False lemma or in Instance-level Join (step 8 in Algorithm 3). The All-False
lemma ensures no false-dismissal in the first case and the instance level pairwise
checking will not false dismiss either. Any pair of time series found having a
correlation value greater than the user given threshold either comes from an All-
True cone pair (step 4 in Algorithm 3) or from individual correlation checking
(step 9 in Algorithm 3). The All-True lemma ensures no false-admission in the
first case and the individual checking will not false admit any pair either.

Given a query time series Tq, for the tree-based traversal, pairs formed by Tq

and individual time series in a non-leaf node will be output if they satisfy the
All-True lemma; pairs formed by Tq and individual time series in a non-leaf node
will be dismissed if they satisfied the All-False lemma. The children will not be
visited in both of these cases. This will not result in a false dismissal or false
admission for any pair because of the All-True, All-False lemmas and the fact
that the union of the time series sets of a non-leaf node’s children is the same as
the time series set of their parent. The children of a non-leaf node which does not
satisfy the two lemma will be visited recursively. As in the threaded-leaves-only
traversal, the leaf node will also be checked against the All-True and All-False
lemmas. The completeness and correctness can be argued similarly.

Lemma 2 (Completeness and Correctness of the Join Algorithm). The
Similarity Join algorithm is complete and correct.

Proof Sketch:
The Similarity Join algorithm is similar to the Similarity Range Query algo-
rithm with a set of query time series organized as threaded leaves. The com-
pleteness and correctness proofs are similar to those in Lemma 1.

4 Cost Models

In this section, we provide simple algebraic cost models for correlation-based sim-
ilarity range queries and joins(all-pair queries) in spatial time series datasets. The
correlation analysis of spatial time series is a CPU intensive task, and the CPU
cost is at least as important as the I/O cost for datasets with a long sequence of
time series. Furthermore, the number of correlation computations could also be
used to measure the computational cost of correlation analyses in different sys-
tem configurations. Therefore, the number of correlation computations is used
as the unit of cost in the cost models. We will investigate a cost model that
includes the I/O cost of query processing in spatial time series data in future
work.



As we discussed in Section 3, the proposed algorithms for correlation-based
similarity queries include the construction of a similarity search tree and query
processing using the spatial autocorrelation based search tree. Therefore the cost
model of a correlation based similarity query, Cost, consists of Costconstruct tree,
the cost of the formation of the similarity search tree for data, and Costquery,
the cost of query processing. We denote the fraction of leaf cones satisfying the
All-True or All-False lemmas as FAR (the filter ability ratio). The cost models
for similarity range queries and similarity joins are introduced respectively in
the following subsections.

4.1 Cost Models for Correlation-based Similarity Range Queries

Let Tq be the query time series and the objective of the correlation-based simi-
larity range queries be to retrieve all highly correlated time series with Tq from
a spatial time series data S. As discussed in Section 3, there are two query
strategies for similarity range queries: matching using a threaded-leaves-only
traversal and matching using a tree-based traversal. The costs of the formation
of the search tree are the same for the two range query strategies, denoted as
Costconstruct tree. Let T denote the search tree for the dataset S and |T | denote
the number of nodes in T . Assume the average number of the time series in a
leaf cone is nl. We discuss the cost of query processing for the similarity range
queries using the two strategies as follows.

The threaded-leaf-only strategy scans all leaf cones linearly, and prunes all
All-True and All-False cones. Let FARthreaded leaf , which denotes the filtering
ability ratio for this strategy, represent the percentage of All-True and All-False
cones in all leaf cones. Let L denote the threaded leaf cone set in the search tree
and |L| denote the number of leaf cones in L. This strategy scans each leaf cone
once, and the refinements occur for the cones which cannot be filtered. The cost
of the refinement step is |L| × (1−FARthreaded leaf )× nl. Therefore the cost of
query processing for this strategy is:

Costthreaded leaf
range query = |L|+ |L| × (1− FARthreaded leaf )× nl

The tree-based strategy traverses all branches in the search tree. It stops
traversing when the root cone of this subtree is an All-True or All-False or leaf
cone. Let Nt denote all the nodes(cones) visited in the tree-based traversal and
|Nt| denote the number of nodes in Nt. Let FARtree based, which denotes the
leave node filtering ability ratio for this strategy, represent the percentage of
All-True and All-False cones in all visited leaf nodes. The cost of the refinement
step is |L| × (1−FARtree based)× nl. Therefore the cost of query processing for
this strategy is:

Costtree based
range query = |Nt|+ |L| × (1− FARtree based)× nl

Since both strategies construct the same search trees, the filtering ability
ratios are the same for the range query processing using the two strategies, i.e.,
FARthreaded leaf = FARtree based. Hence the costs of the refinement step for



the two strategies are the same. When the filtering ability ratio of a range query
increases, the number of nodes visited using the tree-based strategy, |Nt| often
tends to decrease.

4.2 Cost Models for Correlation-based Similarity Joins

Let S1 and S2 be two spatial time series datasets. The objective of the corre-
lation based similarity join is to retrieve all highly correlated time series pairs
between the two datasets. As discussed in Section 3, there are two query strate-
gies for a similarity join: the nested loop approach, which iterates the threaded
leaves of both search trees, and the single loop approach, which iterates the
threaded leaves of one search tree and traverses the other search tree in a check-
ing and branching manner. The costs of the formation of search trees denoted as
Costconstruct tree are the same for the two join strategies. Let T1 and T2 denote
the search trees for the dataset S1 and S2 respectively. Let |T1| and |T2| denote
the number of nodes in T1 and T2 respectively. Let L1 and L2 be the leaf cone
sets for T1 and T2 respectively, and |L1| and |L2| be the number of leaf cones in
L1 and L2 respectively. Assume the average numbers of the time series in leaf
cones are nl1 and nl2 for L1 and L2 respectively. We will discuss the cost of the
query processing for the join processing using the two strategies as follows.

The strategy using a nested loop of the threaded leaf cones is a cone-level
join between two leaf cone sets of the two search trees. Let FARnested loop, which
denotes the filtering ability ratio for this strategy, represent the percentage of
All-True and All-False cones in the nested loop join. The cost of the nested loop
join is |L1|×|L2|, and the cost of refinement is |L1|×|L2|× (1−FARnested loop).
The total cost of join processing using the nested loop of leaf cones is:

Costnested loop
join = |L1| × |L2|+ |L1| × |L2| × (1− FARnested loop)× nl1 × nl2

The strategy using a single loop of tree-based traversal chooses the search
tree with the smaller number of leaf cones as the outer loop, and choose the
other as the search tree in the inner loop. Without losing the generality, we
assume that the leaf cone set of T1 is chosen as the outer loop and T2 is chosen
as the search tree in the inner loop. Let Nt2 denote all the visited nodes in the
search tree T2 and |Nt2| denote the number of nodes in Nt2. Let FARtree based,
which denotes the leaf node filtering ability ratio for this strategy, represent the
percentage of All-True and All-False cones of the leaf nodes in the nested loop
join. We match each leaf cone center in the outer loop with the inner search
tree T2. Therefore each matching is a special range query for each leaf cone with
multiple time series inside, and the cost is |Nt2|+ |L2|×FARsingle loop×nl1×nl2

The total cost of the joins using the single loop is:

Costsingle loop
join = |L1| × (|Nt2|+ |L2| × (1− FARsingle loop)× nl1 × nl2)

5 Performance Evaluation

We wanted to answer two questions: (1) How do the two query strategies im-
prove the performance of correlation-based similarity range query processing?



(2) How do the two query strategies improve the performance of correlation
based similarity join processing?

Pr
e-

Pr
oc

es
si

ng
Pr

e-
Pr

oc
es

si
ng

time
series 1

+

+

+

Answers

Sp
at

ia
l A

ut
oc

or
re

la
tio

n-
ba

se
d

Se
ar

ch
 T

re
e 

C
on

st
ru

ct
io

n

thresholdcorrelation
Sp

at
ia

l A
ut

oc
or

re
la

tio
n-

ba
se

d

Se
ar

ch
 T

re
e 

C
on

st
ru

ct
io

n +
+

initial cone size 1

initial cone size 2

Threaded Leaves only Traversal

range query

join

Tree-based Traversal

time

Threaded Leaves only Traversal

range query time series

series 2

Note: represents the multiple choices

spatial

spatial

Pre-Processing Refinement

All-True All-False

Filtering

minimal

Fig. 3. Experimental Design

We evaluated the performance of the proposed query processing strategies
with a dataset from NASA Earth science data [15]. In this experiment, correlation-
based similarity queries were carried out between the Sea Surface Temperature
(SST) in the eastern tropical region of the Pacific Ocean(80W - 180W, 15N -
15S) and Net Primary Production (NPP) in the United States. The NPP time
series from 2901 land cells of the United States and the SST time series from
11556 ocean cells of the eastern tropical region of the Pacific Ocean were ob-
tained under a 0.5 degree by 0.5 degree resolution. The records of NPP and SST
were monthly data from 1982 to 1993.

Figure 3 describes the experimental setup to evaluate the different strategies
for similarity range query and join processing. As we noted in Section 3, there are
two proposed strategies for the query processing: threaded-leaves-only traversal
and tree-based traversal. We investigated the two strategies for range similarity
queries. For the similarity joins, we chose the threaded-leaves-only traversal for
the outer loop, and we evaluated the two query strategies in the search tree of
the inner loop.

Here we briefly discuss the selection of parameters for the experiments. As we
stated in Section 3, the range of the maximum threshold of cone angles, τmax, is
related to the minimal correlation thresholds θ and it is bounded by the minimal
of the arccos(θ)

2 and 180◦
4 − arccos(θ)

2 . In our application domain, one of constrains
is the need for fast search tree construction. We begin with the construction
of a search tree using a starting cone size. The starting cone sizes depend on
the nature of the data and can be roughly estimated using correlograms. The
spatial correlogram plots the average correlation of pairs of spatial time series
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Fig. 4. Empirical Correlograms for Land and Ocean Samples

with same spatial distance against the spatial distances of those pairs. A coarse
starting cone size is enough to construct the spatial autocorrelation-based search
tree. Figure 4 represents the correlograms of samples from the eastern tropical
region of the Pacific Ocean and the United States and illustrates the relation-
ships between the pairwise distances and correlations among the samples. The
x-axis represents the distances of the ocean-ocean/land-land pairs in the unit
of degree, and the y-axis represents the correlations of the time series of the
ocean-ocean/land-land pairs. According to this figure, the ocean demonstrates
higher spatial autocorrelation than the land. The land does not show as strong
spatial autocorrelation as the ocean, and we will vary the starting cone size only
for the eastern tropical Pacific Ocean in the experiment for simplicity. The land
cone size was fixed at 1× 1.

5.1 Correlation-based Similarity Range Query Processing

This section describes a group of queries carried out to show the savings of the
two strategies for a correlation-based range similarity queries. The SST data for
the eastern tropical region of the Pacific ocean was chosen as the inner loop to
construct a spatial autocorrelation-based search tree. The query time series were
from the NPP data in the United States. We carried out the range queries in the
spatial autocorrelation-based search tree for SST. All time series in SST, which
correlates with the query NPP time series over the given minimal correlation
threshold θ, are retrieved. We chose the starting cone size for the eastern tropical
region of the Pacific Ocean to be 8× 8. (Assume that we have built the spatial
autocorrelation-based search tree for the SST time series in the inner loop before
we carried out the queries.)

The brute force strategy scans all the time series in SST linearly. The cost
of the brute force range queries is equal to |SST |, where |SST | denotes the
number of time series in the SST data. Here we define the saving ratio as the
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Fig. 5. Savings and Selectivity Ratios for Range Query Processing

percentage of cost savings of a range query processing compared to the cost of
a range query using the brute force strategy measured in the unit of number of
correlation computations. And we define the average saving ratio for multiple
range queries as the mean saving ratio for these range queries. We define the
selectivity ratio for a range query as the fraction of query results of time series
among all the time series in the dataset. And we define the average selectivity
ratio for multiple range queries as the mean selectivity ratio for these range
queries.

We randomly chose 10 NPP time series from the United States and car-
ried out the correlation-based similarity range queries using the two different
strategies respectively with the SST data from the eastern tropical region of the
Pacific Ocean. The geographical locations of the 10 query time series were widely
spread in the United States. The average selectivity ratios for the 10 queries at
the different minimal correlation thresholds are illustrated in the lower plot of
Figure 5. As the minimal correlation threshold increased from 0.3 to 0.9, the
average selectivity ratio decreased from 0.4 to 0. The average saving ratios using
the two query strategies for the 10 queries at the different minimal correlation
thresholds (0.3-0.9) are presented in the upper plot of Figure 5. The solid line
represents the average saving ratios for the threaded-leaves-only traversal strat-
egy, which range from 0.46 to 0.80. The dash-dot line represents the average
saving ratios for the tree-based traversal strategy, and the saving ratios range
from 0.48 to 0.89.

As the selectivity ratio decreases, more and more non-leaf nodes(cones) in the
search tree are identified as All-True or All-False cones in the query processing
using the tree-based strategy. Thus the tree-based strategy often outperformed
the threaded-leaves-only strategy as the selectivity ratio decreased.



5.2 Correlation-based Similarity Join Processing

This section describes a group of experiments carried out to show the net sav-
ings of the two strategies for the correlation-based similarity joins. The NPP
time series dataset for the United State was chosen as the outer loop. As we
discussed in the selection of parameter, the cone size for the NPP data was fixed
at 1 × 1. The SST time series data for the eastern tropical region of the Pa-
cific Ocean was chosen as the inner loop. A spatial autocorrelation-based search
tree was constructed for the SST data. (Assume that we have built the spa-
tial autocorrelation-based search trees before we carried out the similarity join
operations.)
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Fig. 6. Savings for Join Processing

The cost of a brute force strategy is |NPP |×|SST |, where |NPP | and |SST |
are the number of the time series in NPP and SST respectively. Here we define
the saving ratio as the percentage of cost savings of a join processing compared
to the cost of a join using a brute force strategy measured in the unit of number
of correlation computations. We define the selectivity ratio for a join as the
fraction of join results of time series among the cross product of the two spatial
time series datasets.

The selectivity ratios for the join processing of the NPP data and SST data
are shown in Table. 4. As the minimal correlation threshold of the joins increased
from 0.3 to 0.9, the selectivity ratio decreased from 0.39 to 0.

The saving ratios of the join processing using the two strategies are shown in
Figure 6. Each subplot represents the saving ratios of the join processing for the



two strategies using the search tree beginning with the different starting ocean
cone sizes at a fixed minimal correlation threshold. The starting cone sizes for
the eastern tropical region of the Pacific Ocean vary from 2 × 2 to 8 × 8. The
saving ratios were presented at the different minimal correlation thresholds as
shown in Figure 6.

The saving ratios of the join processing using both strategies increases as the
minimal correlation threshold of the joins increases. When the selectivity ratio is
high, more leaf nodes(cones) are possibly traversed in the join processing using
the tree-based strategy. The threaded-leaves-only strategy often tends to outper-
form the tree-based strategy at a high selectivity ratio. However, the tree-based
strategy often outperformed the threaded-leaves-only strategy as the selectivity
ratio was decreased.

Minimal Correlation Thresholds 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Selectivity Ratios 0.39 0.22 0.11 0.04 0.005 0.0006 0

Table 4. Selectivity Ratios for the Join between NPP data and SST data

In summary, the experimental results show that the query processing using
the two query strategies saves a large fraction of the computational cost. The
performance of the query processing using the two strategies is robust to the
starting cone sizes, and it offers stable savings for the different starting cone
sizes.

6 Conclusion and Future Work

We investigated the processing strategies for correlation-based similarity range
queries and joins using a spatial autocorrelation search tree. Algebraic cost mod-
els were proposed and evaluation and experiments with Earth science data [15]
show that the performance of the query and join processing strategies using
the spatial autocorrelation-based search tree structure saves a large fraction of
computational cost.

In future work, we would like to explore other search tree candidates, such as
k-d tree, R-tree, and R-link tree. We plan to incorporate I/O costs into our cost
models and carry out the comparison of experimental results with the prediction
of algebraic cost models. We will also carry out a comparison study between the
proposed query processing strategies with other indexing techniques [2, 6, 9] in
spatial time series data.
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