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ABSTRACT 
To predict the effect of the oceans on land climate, 
Earth Scientists have developed ocean climate indices 
(OCIs), which are time series that summarize the 
behavior of selected areas of the Earth's oceans.  For 
example, the Southern Oscillation Index (SOI) is an 
OCI  that is associated with El Nino.  In the past, Earth 
scientists have used observation and, more recently, 
eigenvalue analysis techniques, such as principal 
components analysis (PCA) and singular value 
decomposition (SVD), to discover ocean climate 
indices. However, these techniques are only useful for 
finding a few of the strongest signals and, furthermore, 
impose a condition that all discovered signals must be 
orthogonal to each other. We have developed an 
alternative methodology for the discovery of OCIs that 
overcomes these limitations and is based on clusters 
that represent ocean regions with relatively 
homogeneous behavior.  The centroids of these clusters 
are time series that summarize the behavior of these 
ocean areas.  We divide the cluster centroids into 
several categories: those that correspond to known 
OCIs, those that are variants of known OCIs, and those 
that represent potentially new OCIs.  The centroids that 
correspond to known OCIs provide a validation of our 
methodology, while some variants of known OCIs may 
provide better predictive power for some land areas.  
Finally, we show that, in some sense, our current cluster 
centroids are relatively complete, i.e., capture most of 
the possible candidate OCIs. 

Keywords 
clustering, time series, Earth science data, correlation, 
scientific data mining 

1. INTRODUCTION 
Teleconnections are the simultaneous variation in 
climate and related processes over widely separated 
points on the Earth.  For example, El Nino, the 
anomalous warming of the eastern tropical region of 
the Pacific, has been linked to climate phenomena such 
as droughts in Australia and heavy rainfall along the 
Eastern coast of South America [Tay98]. For this 
paper, we will only be concerned with teleconnections, 
such as El Nino, that involve the relationship of the 
ocean to land climate.  To capture these ocean-land 
teleconnections, Earth scientists have developed ocean 
climate indices (OCIs), which are time series that 
summarize the behavior of selected areas of the Earth's 
oceans [IND1, IND2].   

Our interest in OCIs arises from a desire to use 
climate variables, such as long term sea level pressure 
(SLP) and sea surface temperature (SST), to discover 
interesting patterns relating changes in NPP (“plant 
growth”) to land surface climatology and global 
climate. NPP (Net Primary Production) is the net 
assimilation of atmospheric carbon dioxide (CO2) into 
organic matter by plants, and ecologists who work at 
the regional and global scale have identified NPP as a 
key variable for understanding the global carbon cycle 
and the ecological dynamics of the Earth. Terrestrial 
NPP is driven by solar radiation and can be constrained 
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by precipitation and temperature.  Keeping track of 
NPP is important because it includes the food source of 
humans and all other animals, and thus, sudden changes 
in the NPP of a region can have a direct impact on the 
regional ecology.  Predicting NPP based on, for 
example, sea surface temperature would be of great 
benefit given the near real-time availability of SST data 
and the ability of climate forecasting to anticipate SST 
El Nino/La Nina events. An ecosystem model for 
predicting NPP, CASA (the Carnegie Ames Stanford 
Approach [PKB99]), has been used for over a decade 
to produce a detailed view of terrestrial productivity.   
Our goal in the investigations of OCIs is to improve our 
understanding of how ocean-land teleconnections 
involving temperature and precipitation affect NPP.   

Earth scientists have used observation and 
eigenvalue analysis techniques, such as principal 
components analysis (PCA) and singular value 
decomposition (SVD), to discover ocean climate 
indices [SZ98]. However, these techniques are only 
useful for finding a few of the strongest signals and, 
furthermore, impose a condition that all discovered 
signals must be orthogonal to each other.  After a brief 
overview of the type of data we are working with 
(Section 2), we present a more complete discussion of 
the limitations of eigenvalue based approaches and how 
an alternative approach, based on clustering, can 
overcome these limitations (Section 3). 

In a previous paper, [Ste+02] we described this 
clustering based approach to the discovery of OCIs, 
and showed that our approach was capable of 
discovering some of the well-known OCIs, such as 
those related to El Nino.  For this paper we focus on 
showing how this methodology can be used to identify 
clusters that represent potentially useful OCIs that are 
different from known OCIs.  We will use the procedure 
of [Ste+02] in a slightly simplified form as described 
below.  
1) Use cluster ing to find areas of the oceans that 

have relatively homogeneous behavior .  Each of 
these clusters can be characterized by a centroid, 
i.e., the mean of all the time series describing the 
ocean points that belong to the cluster, and this 
centroid represents a potential OCI.     

2) Evaluate the influence of potential OCIs on 
land points.  Specifically, we are only interested in 
using a time series (cluster centroid, or otherwise) 
as an OCI if it shows a strong connection 
(correlation) with the behavior of a well-defined 
region of the land.  One way of evaluating OCI 
“ impact”  on the land is to compute the area-

weighted* correlation of each cluster centroid 
(potential OCI) with each land point, where the 
behavior of a land point is described by a time 
series which captures the time dependent behavior 
of some variable, e.g., temperature or precipitation, 
associated with the land point.  The clusters or 
pairs of clusters which strongly “affect”  many land 
points are potential candidates for climate indices. 
(Note: some of the words are italicized to indicate 
that correlation does not imply causality.  
However, often causal relationships exist in this 
domain and for simplicity, we may sometimes use 
causal terminology.)  

3) Compare the influence of candidate OCIs to 
well-known OCIs.  The cluster centroids which 
are candidate OCIs can be divided into four 
categories with respect to known OCI’s in terms of 
correlation: very high, high, medium, and low.  
Cluster centroids that are very highly correlated to 
known indices represent a rediscovery of well-
known indices and serve to validate our approach.  
This was the focus of  [Ste+02].   Cluster centroids 
that have a high or medium correlation to well-
known indices represent alternatives to current 
indices in that they may potentially be better 
predictors of land behavior, at least for some 
regions of the land.  Finally, cluster centroids that 
are not well correlated with known indices may 
represent potentially new Earth science 
phenomena. 

 
More specifically, Section 4 is devoted to the 

presentation of preliminary results that compare 
candidate OCIs, which are cluster centroids derived 
from the clustering of Sea Surface Temperature, with 
well-known indices in terms of their area-weighted 
correlation to temperature on the land.   After briefly 
mentioning the rediscovery of some well-known 
indices, we present a number of cluster centroids that 
have high area-weighted correlation to land 
temperature. While the coverage, (area of the land for 
which the correlation is high) is often similar to that of 
well-known OCIs, in many cases, the cluster centroids 
have higher correlation than the known indices for 
certain regions of the land. 

Finally, although clustering appears to be doing a 
good job of finding some regions of the ocean that are 
highly correlated to land behavior, it is reasonable to 
ask whether we have missed some points on the ocean 
that might also be good predictors of land behavior.  To 

                                                                
* Area-weighted correlation is the weighed average of the correlation 

of the OCI with all land points, where weight is based on the area of 
the land grid point. 
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answer this question, we calculated the area-weighted 
correlation of each ocean grid point and compared the 
points with high area-weighted correlations to the 
cluster centroids.  What we found was that most, 
although not all, points that with high area weighted 
correlation are quite similar to the cluster centroids, and 
thus, we are not missing many potential OCIs.  This 
analysis is presented in Section 5. 

2. Ear th Science Data 
The Earth science data for our analysis consists of 
global snapshots of measurement values for a number 
of variables (e.g., NPP, temperature, pressure and 
precipitation) collected for all land surfaces or water 
(see Figure 1). These variable values are either 
observations from different sensors, e.g., precipitation 
and sea surface temperature (SST), or the result of 
model predictions, e.g., NPP from the CASA model, 
and are typically available at monthly intervals that 
span a range of 10 to 50 years. For the analysis 
presented here, we focus on attributes measured at 
points (grid cells) on latitude-longitude spherical grids 
of different resolutions, e.g., NPP, which is available at 
a resolution of 0.5° x 0.5°, and sea surface temperature, 
which is available for a 1° x 1° grid. 

Using variables derived from sensor observations, 
Earth scientists have developed standard ocean climate 
indices.  These indices are useful because 1) they can 
distill climate variability at a regional or global scale 
into a single time series, 2) they are related to well-
known climate phenomena such as El Nino, and 3) they 
are well-accepted by Earth scientists. For example, 
various El Nino related indices, such as NINO 1+2 and 
NINO 4, have been established to measure sea surface 
temperature anomalies across different regions of the 
Pacific Ocean.  Some of the well-known climate indices 
are shown in Table 1 [IND1, IND2].   Figure 2 shows 
the time series for the SOI index.  Note that the dip in 
1982 and 1983 corresponds to a severe El Nino event. 

For completeness, we mention that there are 
significant issues related to the spatial and temporal 
nature of Earth science data: the “proper”  measure of 
similarity between time series, the seasonality of the 
data, and the presence of spatial and temporal 

autocorrelation (i.e., measured values that are close in 
time and space tend to be highly correlated, or similar).  
For our similarity measure, we use Pearson’s 
correlation coefficient [Lin98], which ranges between –
1 (perfect negative linear correlation) and 1 (perfect 
positive linear correlation), with a value of 0 indicating 
no linear correlation.  To handle the issues of 
seasonality and temporal autocorrelation, we pre-
process the data to remove seasonality.  In particular, 
we use the “monthly Z score”  transformation, which  
takes the set of values for a given month, calculates the 
mean and standard deviation of that set of values, and 
then “standardizes”  the data by calculating the Z-score 
of each value, i.e., by subtracting off the corresponding 
monthly mean and dividing by the monthly standard 
deviation.  For further details, we refer the reader to 
[Ste+01] or [Tan+01].   

Climate 
Index 

Descr iption 

SOI  Measures the sea level pressure (SLP) anomalies 
between Darwin and Tahiti 

NAO Normalized SLP differences between Ponta 
Delgada, Azores and Stykkisholmur, Iceland 

NINO 1+2   Sea surface temperature anomalies in the region 
bounded by 80°W-90°W and 0°-10°S 

NINO 4  Sea surface temperature anomalies in the region 
bounded by 150°W-160°W and 5°S-5°N 

NP Area-weighted sea level pressure over the region  
30N-65N, 160E-140W 

Global Snapshot for Time t1 Global Snapshot for Time t2 

SST

Precipitation

NPP

Pressure
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Precipitation

NPP

Pressure
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Figure 1: A simplified view of the problem domain. 
 

Table 1: Description of well-known climate indices.  
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Figure 2:  Southern Oscillation Index (SOI) 
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3. Eigenvalue Approaches vs. Cluster ing 

3.1 Finding Strong Spatial or  Temporal Patterns 
in Earth Science Data Using SVD Analysis 

 Given a data matrix, whose rows consist of time 
series from various points on the globe, we would like 
to discover the strongest temporal or spatial patterns in 
the data.  Earth scientists have profitably used 
Empirical Orthogonal Functions (EOF), to find spatial 
patterns, and temporal patterns.    

EOF is just another name for a statistical technique 
known as Principal Components Analysis (PCA), 
which, in turn, is equivalent to a technique from linear 
algebra, which is known as singular value 
decomposition (SVD).  (For true equivalence, it is 
necessary to remove the mean from the data before 
applying SVD.)  At a high level (see Appendix A for a 
more technical description), SVD decomposes a matrix 
into two sets of patterns, which, for Earth science data, 
correspond to a set of spatial patterns and a set of 
temporal patterns.  These patterns come in pairs, i.e., 
for every temporal pattern there is a corresponding 
spatial pattern.  (Note that each temporal pattern is a 
row vector, i.e., a time series, while each spatial pattern 
is a column vector.) 

 Also, for each pair of patterns, there is an 
associated value (called a singular value), which is 
greater than or equal to 0.  The strongest patterns (or 
the patterns that capture the largest amount of variation 
in the data) are associated with the largest singular 
values*, and sometimes, by looking at only the first few 
singular values and their associated pairs of spatial and 
temporal patterns, it is possible to account for most of 
the variation in the data.  Looked at in another way, the 
original data can be approximated as a linear 
combination of these strongest patterns.  Again, see 
Appendix A for a more explanation. 

 Finally, for Earth science data, we can plot the 
temporal patterns  (right singular vectors, known as t-
EOFs) in a regular line plot and the spatial patterns (left 
singular vectors, plain EOFs) on a spatial grid, and 
thus, visualize the patterns. 

3.2  An SST Example 
To illustrate EOFs and t-EOFs we provide an example 
using SST data.   In the following, we use data that has 
been pre-processed using the monthly Z-score. (Note 
that the rows of this data have a mean of 0 and thus, 
and SVD analysis is equivalent to an EOF analysis.)  
To find the top spatial and temporal patterns via SVD 
is a simple matter using current mathematics or 
statistics packages. For example, in MATLAB this 
requires only the following command:   

                                                                
* Singular values equivalent to the eigenvalues of PCA. 

 [ u s v ] = svds( sparse( z_sst ) , 20 ); 

where z_sst is the SST data matrix which has been 
normalized using the montly Z-score.  The columns of 
u, the left singular vectors, are the spatial patterns, the 
diagonal elements of s are the singular values, and the 
columns of v, the right singular vectors, are the 
temporal patterns. 

 For SST the strongest temporal pattern (the first 
column of v) is highly related to SST as is shown in 
Figure 3.  The correlation of the first right singular 
vector with Nino 3 is 0.86.  The spatial pattern 
corresponding to the first column of v is the first 
column of u, and is shown in Figure 4.  Note that to 
map such a spatial pattern it is necessary to keep track 
of which grid location that corresponds to each row of 
data (each row of u). 

3.3 L imitations of SVD 
The performance of SVD in the above example, is 

impressive, a well-known OCI was discovered 
straightforwardly.  However, there are a number of 
limitations of SVD analysis, some of which are well-
known.  For example, SVD finds the strongest patterns 
best since its goal is to provide the best rank k 

Figure 3: First right singular vector of SST (green) 
plotted against the NINO 3 index (blue).  

Figure 4:  Strongest spatial pattern of SST. 
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approximation to a matrix, 1 ≤ k ≤ rank(data matrix)  
(see Appendix A).  Thus, slightly weaker patterns may 
not show up as well.  For example, if the seasonality is 
not removed from the data, at least the first few 
strongest patterns will be seasonal patterns of different 
types. While it is true that we remove seasonality from 
the data as part of the preprocessing step, this 
phenomenon can still occur once seasonality is 
removed.  In other words, strong patterns mask weaker 
ones.   Of course, clustering is somewhat subject to the 
same problem, dominace of strong patterns, but we 
would argue not to the extent of SVD.  Traditionally 
only the first few SVD vectors are regarded as 
trustworthy while clustering approaches can find many 
“good”  clusters. 

Also, the patterns found using SVD, i.e., the 
singular vectors, are constrained to be orthogonal to 
each other.  (This is another reason that only the first 
few singular vectors are “ reliable.” ) While 
orthogonality may be appealing mathematically, it can 
also make patterns hard to interpret.  Earth scientists 
have developed an approach to try to address this 
problem - ‘ rotated’  EOFs [SZ98] - but it is somewhat 
controversial. 

Yet another limitation of SVD is best illustrated by 
example.  Suppose that we have a number of clusters in 
two dimensional space, e.g., 10, then SVD cannot find 
all of these “patterns”  because u and v consist only of 
two vectors.  More generally, SVD will find patterns if 
they fall into independent subspaces, but cannot 
distinguish between patterns that lie within a subspace 
and may have problems with patterns in overlapping 
subspaces. 

A more subtle limitation of SVD is that the spatial 
pattern (an EOF) found in a data set corresponds 
roughly to the pattern of correlation that you would see 
if you computed the correlation of each original data 
point with the corresponding right singular vector.  
However, in the Earth science domain, there is often a 
lag associated with the impact of various phenomena.  
SVD analysis cannot take into account any such lag. 

Finally, efficiency can be a concern for the SVD 
approach, although, even with our biggest current data 
set consisting of ~70,000 time series of length 500, 
SVD computation times are still acceptable. 

3.4 Cluster ing 
Clustering, on the other hand, does not suffer from 

the limitations mentioned above.  In this case the 
patterns are the cluster centroids.  They are not 
constrained to be orthogonal and are easy to interpret, 
i.e., a cluster centroid is the representative point of a 
collection of relatively cohesive points.  In our case, 
they are the representative time series of relatively 
cohesive sets of time series.  Furthermore, in general, 

clustering does not have any limitations with respect to 
detecting patterns that lie in one subspace or in 
overlapping subspaces.  Finally, while clustering finds 
the strong patterns, it can also do a good job on finding 
weaker patterns. 

Of course, clustering has a number of limitations 
of its own. In particular, it is necessary to choose a 
clustering algorithm that is suitable for the data and the 
task at hand, and to choose the clustering parameters 
appropriately.  However, there are also choices 
involved with the use of SVD. In particular Earth 
scientists tend to select the areas to which this analysis 
is applied.   

3.5 Another  Example 
To illustrate these ideas, consider a simple 

example.  Assume that we have three sets of 
multivariate normal data of size 100 each and 
dimension 144, which are distributed as N( u1, ����1),  
N( u2, ����2), and N( u3, ����3), where 

u1 ⊥ u2, and are sin(2t) and sin(t), respectively 
u3 = u1 + u2, normalized to have unit L2 norm  
cos(u1, u2) = 0,   
cos(u1, u3) = 0.7071,  
cos(u2, u3 ) = 0.7071 
����1  = ����2 = ����3 = 0.01* I ,  I  = the identity matrix 

Figure 6: Means and Top Two Right Singular 
Vectors. 
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Figure 5 shows a plot of u1, u2, and u3. 

If we perform an SVD analysis on the 
combined data – after removing the mean to make the 
results equivalent to a PCA analysis – then we get the 
following singular values:  

14.3114   10.2865    2.9116    2.8749   …    0.6273    0.5919    0.5658    
0.0000 

Clearly only the first two singular values are significant. 
Table 2 shows the cosine similarity for the first two 
right singular vectors, v1 and v2, vs. the three means.  
While v1 reflects u3 and the third cluster, v2 mixes up 
clusters 1 and 2.  Figure 6, which plots the three means 
and first two right singular vectors, also indicates this. 

 v1 v2 

u1 -0.7203     -0.6868 

u2 -0.6880       0.7178 

u3 -0.9958       0.0219 

However, if K-means is asked to find three 
clusters, it will, with a simple K-means algorithm and 
on the first try, find exactly the right clusters, i.e., every 
cluster consists of points generated from the same 
mean, indicating that the grouping in the data is quite 
strong.   

4. Discovery and Analysis of OCIs  
4.1 Background 
If we apply a clustering algorithm [JD88, KR90] to 
cluster the temperature time series associated with 
points on the ocean, we obtain clusters that represent 
ocean regions with relatively homogeneous behavior.  
The centroids of these clusters are time series that 
summarize the behavior of these ocean areas, and thus, 
represent potential OCIs. Consequently, clustering is an 
initial and key step in using data mining for the 
discovery of OCIs.  

The SNN clustering approach produces high 
quality clusters, which are almost always 
geographically contiguous, and automatically discovers 
the “correct”  number of clusters.  Because of space 
considerations, we omit a detailed description of the 
SNN algorithm  and refer the reader to [ESK01].  We 
used SNN clustering on sea surface temperature (SST) 
over the time period from 1958 to 1998.  Note that the 
monthly Z score transformation has been used, thus 
removing seasonality and putting the focus on the 
anomalies in the time series.  Figure 7 shows the ocean 
clusters for the long-term data.   

One approach to evaluating potential ocean climate 
indices is to look at the area-weighted correlation of 
the time series representing a candidate OCI with the 
time series associated with land points, e.g., 
temperature or precipitation time series.  A higher value 
indicates a stronger impact on the land.  

 The details of computing the area-weighted 
correlation are as follows.  We first compute the 
correlation of the time series of the candidate OCI with 
the time series associated with each land point.  We 
then compute the weighted average of the absolute 
correlations of each land point, where the weight 
associated with each land point is just its area.   (We 
use absolute correlation because we are interested in 
the strength of the connections between ocean and land, 
not the direction.) The resulting area-weighted 
correlation value can be at most 1 (this would be the 
case where all land time series have a correlation of 1 
or –1 with the candidate OCI), but is normally much 
lower.   The minimum value is 0. 

 One variation of this procedure is to eliminate any 
correlations whose magnitudes are below a certain 
threshold. The idea is to see if looking only at stronger 
correlations produces different results and to eliminate 
noise. Another variation is to compute the area-
weighted correlation for various shifts, i.e., the 
correlation between each OCI and each land point is 
calculated using the maximum shifted correlation, 
where the possible shifts range from 0 to 6 months.  
While other variations are possible, we observed 
similar results and will not discuss them further here.   
Indeed, we mostly focus on results using the maximum 
shifted correlation and no threshold.   

  Regardless of exactly which version of area-
weighted correlation is used, we need a baseline to 
compare against.  For this, we can use already existing 
OCIs.  Thus, if a candidate shows an area-weighted 

Table 2: Cosine similarity of means and right 
singular vectors. 

Figure 7: 107 SST clusters.    
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Figure 8:  Area weighted correlation of well-known indices. 

Figure 9:  Area weighted correlation of highest SST cluster centroids. 
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correlation that is roughly as good or better than that of 
an existing OCI, it might be worth investigating.  If the  
area-weighted correlation is lower, then either the 
candidate OCI is not a good index or its connection 
with the land may be very localized.  

4.2 Baseline: Area-weighted Correlation of  Well-
Known Climate Indices 

Thus, to get our baseline we computed the total are 
area-weighted correlations for 11 well-known OCIs. 
These results are shown in Figure 8.  The ENSO 
indices have total area-weighted correlation above 0.15, 
while the NAO and AO indices have area-weighted 
correlation greater than 0.13. Other indices have much 
lower area-weighted correlation. 

The area-weighted correlations were also 
computed for the SST cluster centroids.  These results 
are shown in Figure 9.  Only the cluster centroids that 
are close to the area-weighted coverage limit of 
interest, 0.10, are shown. 

The following index labels are for the x-axis of the 
plots.  For more information see Table 1 or [ 
IND1, IND2].  Note that 1, 6, and 8-11 are all El 
Nino related indices. 
1. SOI ( Southern Oscillation Index) 
2. NAO (North Atlantic Oscillation) 
3. AO (Artic Oscillation) 
4. PDO (Pacific Decadel Oscillation) 
5. QBO (Quasi-Biennial Oscillation Index ) 
6 .CTI (Cold Tongue Index) 
7. WP (Western Pacific) 
8. ANOM12  (Normalized version of NINO12) 
9. ANOM3   (Normalized version of ANOM3) 
10. ANOM4 (Normalized version of NINO4) 
11. ANOM34 (Normalized version NINO34) 
 

4.3 Weighed Area Correlation of Cluster  
Centroids 
For the analysis we divided the cluster centroids with high 
area-weighted correlation (> 0.1) into 4 groups depending on 
the correlation of the cluster centroids to know OCIs. 

1. G0: correlation to known OCIs ≥ 0.8. 

2. G1: correlation to known OCIs between 0.4 and 0.8. 

3. G2: correlation to known OCIs between 0.25 and 0.4. 

4. G3: correlation to known OCIs ≤ 0.25. 

Note that we studied the area-weighted correlation 
for each group separately. For each group, we kept only 
clusters whose area-weighted correlations satisfy all the 
following conditions: (1) greater than 0.1 (at min 
correlation = 0), (2) greater than 0.05 (at min corr = 
0.1), (3) greater than 0.03 (at min corr = 0.2), (4) 
greater than 0.02 (at min corr = 0.25), (5) greater than 
0.01 (at min corr = 0.3).  Figure 10 shows clusters that reproduce some well-

known OCIs. In particular, cluster 54 corresponds to 

Clusters  11 17 20 24 28 29 31 36 37 57 80 81 83 92 97

1117

20

24

28

29

31

36

37
57

80

81
83

92

97

-180 -140 -100 -60 -20 20 60 100 140 180

90

70

50

30

10

-10

-30

-50

-70

-90

Figure 11:  G1: Clusters with correlation 
to known OCIs between  0.4 
and 0.8. 
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ANOM 1+2, 67 to ANOM 3, 73 to ANOM 3.4, and 75 
to ANOM 4. 

4.4 Coverage of Cluster  Centroids 
While the clusters that are highly and moderately 

correlated with know OCIs probably capture similar 
Earth science phenomena, there is still benefit as known 
OCIs they may still provide some benefits. In 
particular, some cluster centroids provide better 
“coverage,”  i.e., higher correlation, for some areas of 
the land.  This is illustrated in Figures 14 and 15, 
which, respectively, compare the El Nino OCIs to that 
of clusters 62 (G2) and 29 (G1).  Areas of yellow 
indicate where the cluster centroids have higher 
correlation, while areas of blue indicate where the El 
Nino indices have higher correlation.  It is clear that for 
both these clusters there are areas of the land where the 
cluster “outperforms”  the known OCIs. 

5. Completeness Analysis 
Finally, although clustering appears to be doing a good 
job of finding regions of the ocean that are highly 
correlated to land behavior, it is reasonable to ask 
whether we have missed some points on the ocean that 

might also be good predictors of land behavior.  
Ideally, to answer this question, we should find the 
area-weighted correlation of each ocean grid point and 
compare the points with high area-weighted correlation 
to find our cluster centroids. Hopefully all or most 
points with high area-weighted correlation will be 
similar to the cluster centroids.   

Thus, we calculated the area-weighted correlation 
of each ocean grid point.  Note that this is very 
computationally intensive calculation.   Figure 16 
shows the area-weighted correlation (SST vs. land 
temperature) for all 43,614 ocean grid points.  Redder 
areas indicate points with the strongest relationship to 
land temperature. 

For those points that have an area-weighted 
correlation greater than 0.14, we found the points that 
are not similar to the SST cluster centroids for a 
similarity (correlation) threshold of 0.5, 0.7, and 0.9.     
These figures are shown below.  The threshold of 0.14 
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Figure 14: Cluster 29 vs. El Nino Indices 
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Figure 15: Cluster 29 vs. El Nino Indices 

Figure 16: Area-weighted correlation of 
ocean points vs. land 
temperature. 
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Figure 13:  G3: Clusters with correlation to 
known OCIs ≤ 0.25. 
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was chosen by looking at the histogram in Figure 17. 
 While most points are not being “missed”, there 

seems to be a very specific pattern of points that are 
being overlooked and we plan to investigate the 
behavior of our SNN clustering algorithm in more 
detail.    

6. Conclusions and Future Work 
In this paper we have argued that clustering can provide 
an alternative approach to eigenvalalue analyses, based 
on PCA or SVD, for finding ocean climate indices. To 
that end we illustrated some of the limitations of 
eigenvalue analysis, i.e., that it only reliably finds a few 
of the strongest patterns and that these patterns are 
constrained to be orthogonal to one another.  Clustering 
does not suffer from these limitations, although it of 
course, has its own issues. 

We then illustrated the use of clustering by 
showing how clusters of SST could be found and 
evaluated with respect to their impact on land 
temperature.  To measure that impact a new measure, 
area-weighted correlation was introduced. We 
investigated those clusters with relatively high area-
weighted correlation and divided them into four 
groups: those that are very highly correlated with well-
known indices and represent a rediscovery of such 
indices and those that are highly, moderately, or poorly 
correlated with known indices. The indices that are 
highly or moderately correlated may still represent the 
same phenomenon as well-known indices, but may 
provide better predictive power for some land areas.  
The indices that are poorly correlated may represent 
new Earth science phenomena, although this requires 
further evaluation by domain specialists. 

Figure 18: Ocean points with area-
weighted correlation > 0.14 and similarity 
of SST centroids less than 0.60.  

Figure 20: Ocean points with area-
weighted correlation > 0.14 and similarity 
of SST centroids less than 0.80.  

Figure 19: Ocean points with area-
weighted correlation > 0.14 and similarity 
of SST centroids less than 0.70.  

Figure 17: Histogram of area-weighted 
correlation of ocean points vs. 
land temperature. 
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 Finally, we asked the question of whether 
clustering was identifying most or all potential OCIs.  
What we found, is that most points that have high area-
weighted correlation tend to be well correlated with 
cluster centroids.  However, it does appear as though 
we may be missing some points of interest and further 
investigation seems indicated. 
 In the future, we intend to extend our analyses 
to other land and ocean variables and to investigate 
ways of aggregating the data so as to make patterns 
easier to detect.  
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Appendix A. Principal Components Analysis 
(PCA) and Singular Value Decomposition 
(SVD) 

This is a slightly more technical description of 
principal components analysis (PCA) and singular 
value decomposition (SVD) [SZ98]. We focus first on 
SVD and then briefly describe PCA in terms of SVD.  
We will illustrate our discussion through the use of 
SVD approach for removing seasonality from sea 
surface temperature (SST), where our data matrix is M, 
whose rows consist of the collection of time series that 
are of interest, i.e., in this case, the matrix rows consist 
of the sea surface temperature time series for a large 
number of points on the ocean (~150,000 points).  A 
singular value decomposition expresses an m by n 
matrix, M, as the sum of simpler rank 1 matrices as 
follows:  

�
=

=
n

i
iii vusM

1

'��
, where is , a scalar, is the i th 

singular value of M, iu
�

is the i th  left singular vector, 

and iv
�

is the i th  right singular vector.  All singular 

values beyond the first r, where r = rank(M) are 0 and 
all left (right) singular vectors are orthogonal to each 
other and are of unit length.  Also, the singular values 
are in order of decreasing magnitude. 

 Thus, a matrix can be approximated by 
omitting some of the terms of the series that correspond 
to non-zero singular values.  Indeed, if k terms are 
retained, then this approximation has rank k and is the 
best possible rank k approximation as measured by the 
Frobenius matrix norm.  Furthermore, as should be 
clear from the series formulation of SVD, terms with 
small magnitudes do not contribute much, and thus, 
SVD is often used for dimensionality reduction.  In 
some cases the first few singular values are much larger 
than the remaining ones, and the reduction in 
dimensionality is very significant.  

Furthermore, if a characteristic of the data 
corresponds to a particular term (singular value), then 
this characteristic can be removed by eliminating the 
corresponding term.   For example, removing the first 
term, which corresponds to the largest singular value, 
removes a constant component from the SST data, i.e., 
after removing the first term the maximum mean value 
of any times series from is 0.02.  (Before, there was a 
wide distribution of mean values, e.g., many time series 
in the tropics had means in 20’s.) Thus, in this case, 
removing the first term is roughly equivalent to 
normalizing each time series to have a mean value of 0.  

The nature of each term can be analyzed by 
looking at the associated right singular vector, which, in 
this case, can be interpreted as a time series. Figure 21 
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shows the first five right singular vectors for the SST 
matrix.  From the first plot we see that the 1st and 2nd 
right singular vectors, correspond, respectively, to a 
constant and a 12-month seasonal component.   

If the first five right singular vectors are removed, 
then most of the seasonality is removed, and the 
resulting data is much the same as if it had been 
processed by using a Fourier transform or the monthly 
Z score.  However, the SVD approach for removing 
seasonality is more computationally intensive than the 
other approaches and, the other approaches seem more 
“direct.”   But again, this example is just for illustration.   

Finally, PCA is essentially SVD except that the 
mean of the data is removed first.  The more traditional 
computational approach is to find the eigenvalues of 
the covariance matrix of M, where M is the data matrix.  
These eigenvalues are the square of the singular values 
found by SVD and, the eigenvectors are the right 
singular vectors of the SVD decomposition. 
Furthermore, the magnitude of each eigenvalue 
represents the variance of data captured by the 
dimension defined the corresponding eigenvalue, i.e., 
by each pair of singular vectors.  

 

Figure 21:  First five right singular values of SST data. 
(In top left plot, second right singular 
vector is green.) 


