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Abstract— The goal of our NASA sponsored project, “Dis-
covery of Changes from the Global Carbon Cycle and Climate
System Using Data Mining,” is to better understand global scale
patterns in biosphere processes, especially relationships between
the global carbon cycle and the climate system. To that end,
we have developed data mining techniques to efficiently find
spatio-temporal patterns in large Earth Science data sets. One
such technique finds ecosystem disturbances in long-term, non-
stationary fractional photosynthetically active radiation (FPAR)
time series data. A key contribution of this work, which was the
subject of a recent NASA press release, is the development of an
automated technique for detecting abrupt changes in FPAR that
take into account the timing, location, and magnitude of such
changes. Using this technique, scientists were able to estimate
that nearly 9 Pg (peta-grams) of carbon have been lost from the
terrestrial biosphere to the atmosphere as a result of large-scale
ecosystem disturbance events over an 18-year time period. Also,
a novel clustering technique was developed to identify regions of
uniform behavior in spatio-temporal data. The clusters produced
by these methods are useful in discovering climate indices because
they identify significant regions of the ocean or atmosphere where
the behavior is relatively uniform over the entire area. Some
of the discovered clusters correspond to known climate indices
while other clusters are variants of known indices that appear
to provide better predictive power for some land areas and
still other clusters may represent potentially new Earth science
phenomena. Other contributions include visualization techniques
for finding interesting associations using land cover informa-
tion and a filter-and-refine approach for efficiently processing
correlation-based queries. Such innovative data analysis tools and
techniques can aid NASA scientists in analyzing the growing
datasets generated by NASA’s global observing satellites and
offer an unprecedented opportunity for predicting and preventing
future ecological problems by managing the ecology and health
of our planet.

I. I NTRODUCTION

In this paper we present a brief overview of some results
from our currently funded NASA IS-IDU project,Discovery
of Changes from the Global Carbon Cycle and Climate System
Using Data Mining, which is part of the Intelligent Systems
(NRA2-37143) program. During this project we developed
new data analysis and knowledge discovery techniques to
investigate changes in the global carbon cycle and climate
system. The detailed results of this research are availablein the
following papers: [6], [8], [9], [10], [11], [12], [13], [14], [16],
[17], [18], [19], [22], [26], [27], [28]. After a quick description

of the data that we used in our investigations, we describe
some of our work.

II. DATA

The types of data shown in Figure 1 are representative
of the data considered in this project, i.e., the basic data
elements are individual co-registered cells in grids whichcover
the entire surface of the earth with resolutions between 0.25
km and 50 km. (Land variables derived from EOS satellite
data are available at resolutions as high as 0.25 km, while
surface climatology data, e.g., temperature and precipitation,
are only available for grids of resolution 50 km or greater.)At a
particular moment in time, each grid point can be described by
the values of different variables, e.g., Net Primary Production
(NPP), temperature, precipitation, etc. The variable values for
each grid point are available for periodic, discrete pointsin
time with resolutions from 8 days to 1 month. These variable
values can either be the result of observations (from satellites
or other sources) or the result of model predictions.
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Fig. 1. Representation of Earth science data.

III. D ETECTING ECOSYSTEMDISTURBANCES

An ecosystem disturbance is an event that results in a
sustained disruption of ecosystem structure and function,gen-
erally with effects that last for time periods longer than a
single seasonal growing cycle for native vegetation. Phys-
ical disturbance categories include fires, hurricanes, floods,
droughts, lava flows, and ice storms. Biogenic disturbance
categories include the impacts of herbivorous insects, mam-
mals, and pathogens. Anthropogenic disturbance categories
include logging, deforestation, drainage of wetlands, clearing
for cultivation, chemical pollution, and the introductionof



alien species to an ecosystem. Many of these events alter
ecosystem productivity and resource availability (light and nu-
trient availability) for organisms on large spatial and temporal
scales.

Ecosystem disturbances can also contribute to the current
rise of carbon dioxide (CO2) levels in the atmosphere [15].
Because major ‘pulses’ of CO2 from terrestrial biomass loss
can be emitted to the atmosphere during large disturbance
events, the timing, location, and magnitude of vegetation
disturbance is presently a major uncertainty in understanding
global carbon cycles [3]. Elevated biogenic sources of CO2
have global implications for climatic change, which can in turn
affect a vast number of species on Earth and the functioning
of virtually all ecosystems.

We are developing a proven methodology to monitor and
understand most ecosystem disturbance events and their his-
torical regimes at a global scale. As a step in this direction,
we have conducted studies to evaluate patterns in an 18-year
record of global satellite observations of vegetation phenol-
ogy from the Advanced Very High Resolution Radiometer
(AVHRR) as a means to characterize major ecosystem distur-
bance events and regimes [13]. The FPAR absorbed by vegeta-
tion canopies worldwide has been computed at a monthly time
interval from 1982 to 1999 and gridded at a spatial resolution
of 0.5◦ latitude/longitude. Potential disturbance events of large
extent (> 0.5 Mha) were identified in the FPAR time series by
locating anomalously low values (FPAR-LO) that lasted longer
than 12 consecutive months at any 0.5◦ pixel. An example of
such a time series is shown in Figure 2.

 

Fig. 2. A dip in FPAR in Mongoloia during 1987 was verified as anFPAR
disturbance event due to wildfires.

Our study showed that nearly 400 Mha of the global
land surface could be identified with at least one FPAR-LO
event over the 18-year time series (Figure 3). The majority
of these potential disturbance events occurred in tropical
savanna and shrublands or in boreal forest ecosystem classes.
Verification of potential disturbance events from our FPAR-
LO analysis was carried out using documented records of
the timing of large-scale wildfires at locations throughout
the world. Disturbance regimes were further characterized
by association analysis (Section 1.2.5) with historical climate
anomalies. Assuming accuracy of the FPAR satellite record to
characterize major ecosystem disturbance events, we estimate
that nearly 9 Pg of carbon could have been lost from the
terrestrial biosphere to the atmosphere as a result of large-scale
ecosystem disturbance over this 18-year time series. (This

finding was the subject of a NASA press release 03-51AR.)
The use of high resolution MODIS products will improve these
estimates.

 

Fig. 3. First month and year for FPAR-LO lasting> 12 consecutive months
over the period from 1982 to 1999.

IV. EXPLORING THE RELATIONSHIPSBETWEEN CLIMATE

INDICES AND NET ECOSYSTEMPRODUCTION

Global teleconnnections [24], such as the El Nino South-
ern Oscillation (ENSO) [25] can be used to understand si-
multaneous variation in climate and related processes over
widely separated points on the Earth. However, large-scale
teleconnections between ocean and atmospheric processes and
global NPP have yet to be demonstrated, and may escape
ready detection without the aid of automated spatial-temporal
analysis tools.

We applied correlation analysis to 17 years of ocean climate
observations and model-estimated NEP on land to infer short-
term (monthly to yearly) teleconnections between sea surface
temperature and terrestrial carbon cycles [11]. The analysis
suggests that, on a global level, combined climate indices can
be used to predict net ecosystem carbon fluxes over more
than 58 percent of the non-desert/ice covered land surface
with a lead period of 2-6 months. A climate index is a time
series that summarizes the behavior of the Earth’s oceans or
atmosphere and captures the relationships between the land
and the oceans or the atmosphere. Teleconnections detected
between ocean surface climate and seasonal carbon gain in
terrestrial vegetation offer important capabilities for making
inferences about the variability in the terrestrial carboncycle
of natural and agricultural ecosystems worldwide.

We have also investigated global teleconnections of climate
to regional satellite-driven observations for predicted Amazon
ecosystem production, mainly in the form of monthly estimates
of net carbon exchange over the period 1982-1998 from the
NASA-CASA model [10]. Results of our analysis suggest that
anomalies of NPP and NEP predicted from the NASA-CASA
model over large areas of the Amazon region east of 60◦ W
longitude are strongly correlated with the Southern Oscillation
Index (SOI). Extensive areas of the south-central Amazon also



show strong linkages of the FPAR and the NASA-CASA NPP
anomaly record to the Arctic Oscillation (AO) index, which
confirm a strong relation to southern Atlantic climate anoma-
lies, with concurrent impacts on Amazon rainfall patterns.
We further investigated processes for these teleconnections
of global climate to Amazon ecosystem carbon fluxes and
regional land surface climate.
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Fig. 4. Correlation of the Southern Oscillation Index (SOI)to NPP on land.

An additional type of correlation analysis that we have
investigated involves the long-term (20 year) river discharge
records from 30 of the world’s largest river basins [14]. These
records were an attempt to characterize surface hydrologic
flows in relation to net precipitation inputs, ocean climate
teleconnections, and human land/water use patterns. Compar-
isons of paired station records at upstream and downstream
discharge locations within each major river basin suggest
that the relatively ‘natural’ discharge signals represented in
upstream discharge records are sustained in the downstream
station records for nearly two-thirds of the undammed drainage
basins selected. River basins that show the strongest localized
climate control over historical discharge records, in terms of
correlations with net basin-wide precipitation rates, arelocated
mainly in the seasonally warm temperate and tropical latitude
zones, as opposed to river basins located mainly in the higher
latitude zones (above 45◦ N). Ocean climate indices, such
as NINO1+2 and NINO3+4, correlate highly with historical
interannual patterns in monthly river discharge for only four
of the selected discharge station records, namely on the Ama-
zon, Congo (Zaire), Columbia and Colorado (Arizona) rivers.
Historical patterns of cropland development and irrigatedareas
may explain the weak climate correlations with interannual
patterns in monthly river discharge rates for at least one-
third of the major river drainages selected from the historical
discharge data set.

V. D ISCOVERY OFCLIMATE INDICES

Our interest in climate indices [7] arises from a desire to
improve our understanding of teleconnections involving ocean
temperature/pressure and terrestrial carbon flux. In the past,

 

Fig. 5. Correlation between monthly river discharge for Amazon and
NINO3+4 index.

Earth scientists have used observation and, more recently,
eigenvalue analysis techniques, such as principal components
analysis (PCA) and singular value decomposition (SVD), to
discover climate indices [20]. These techniques are only useful
for finding a few of the strongest signals and impose a
condition that all discovered signals must be orthogonal to
each other. We have developed an alternative methodology
[17], [18], [16] for the discovery of climate indices that over-
comes these limitations and is based on clusters that represent
geographic regions with relatively homogeneous behavior.The
centroids of these clusters are time series that summarize the
behavior of these geographical areas.

Figure 6 shows the clusters produced by shared nearest
neighbor (SNN) clustering [5] of sea level pressure data for
the period 1958-1998 [17], [18], [16]. Many pairs of clusters
in this clustering are highly correlated with the known climate
indices. For example, clusters 13 and 20 are highly correlated
with the Southern Oscillation Index (SOI), clusters 10 and
18 are correlated with the Arctic Oscillation index (AO),
and clusters 7 and 10 are correlated with the North Atlantic
Oscillation index (NAO).

We have also investigated clusters of SST. Four of these
clusters are very highly correlated (correlation> 0.9) with
well-known climate indices, e.g., NINO 1+2, NINO 3, NINO
3.4, and NINO 4, and were located in approximately the same
location as where these indices are defined [17], [18], [16].
The SST clusters that are less well correlated with known
indices may represent new Earth science phenomena or weaker
versions or variations of known phenomena. Indeed, some of
these cluster centroids provide better ‘coverage,’ i.e., higher
correlation to land temperature, for some areas of the land.
This is illustrated in Figure 7, which compares the El Nino
indices to that of clusters 62 (close to Brazil). Areas of
yellow indicate where cluster 62 has higher correlation, while
areas of blue indicate where the El Nino indices have higher
correlation. Observe that cluster 62 ‘outperforms’ the known
indices for some areas of the land. The overall coverage of
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Fig. 6. 25 ocean clusters produced by SNN clustering of sea level pressure
data for 1958-1998.
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Fig. 7. Comparison of correlation of Cluster 62 vs. El Nino Indices to land
Temp.

cluster 62 (measured in area weighted correlation) is similar
to that of an El Nino based index, such as NINO 1+2, NINO
3, etc.)

VI. D ISCOVERINGASSOCIATIONS AMONGANOMALOUS

NPPAND CLIMATE EVENTS

Discovery of spatio-temporal relationships between global
climate changes and land surface processes is crucial for
understanding how the different elements of the ecosystem
interact with each other. Such relationships are often captured
using correlation analysis between time series or using a
knowledge discovery technique known as association analysis
for event sequences [2]. The goal of association analysis isto
extract patterns in the form of rules or sets of events that will
predict the occurrence of an event based on how frequent it
co-occurs with other events.

We have previously applied association analysis to discover
interesting relationships between anomalous NPP and climate
events. Anomalous HI and LO events are first identified as val-
ues in the time series that deviate significantly above or below

their monthly mean. For example, PREC-LO may suggest a
well-below average precipitation or drought-related event. If
events such as NPP-LO and PREC-LO are independent, then
it can be shown that the probability they co-occur in the same
month at the same location will be small. If these events co-
occur more frequently than expected, then it is an indication
of a non-random association [22], [21]. The patterns extracted
using association analysis techniques are verified using the
statistical chi-squared test (Lindgren, 1998).

The patterns discovered using association analyses are
also evaluated on the basis of their frequency of occurrence
within major global vegetation type. For example, Figure 9a
shows the regions where the events FPAR-HI and NPP-HI
are observed together frequently. This pattern suggests that
anomalously high values of FPAR, which means that the veg-
etation has generated more ”light-harvesting” photosynthetic
capability than average, is often associated with abnormally
high NPP values. Though this result is not surprising, further
analyses reveal that such patterns are observed more frequently
in regions that correspond to semi-arid annual grasslands,as
shown in Figure 9b [22]. One possible explanation for such
observation is that grasslands are vegetation that is able to
more quickly take advantage of periodically high precipitation
(and possibly solar radiation) than forests.

VII. PROCESSINGCORRELATION QUERIES

Massive amounts of data offer an unprecedented opportu-
nity for researchers to discover potential nuggets of valuable
information. The typical data in this project arespatial time
series data, where each time series references a location
on the Earth. Finding location pairs with highly correlated
time series in spatial time series data is important for many
application domains such as Earth science, epidemiology,
ecology, climatology, and census statistics. For example,such
queries were used to identify the land locations on the Earth
where the climate was often affected by El Nino [26].

However, processing correlation queries in spatial time se-
ries data is computationally expensive because of the massive
numbers of locations and time snapshots. Previous work [1],
[4] did not incorporate spatial and temporal properties (e.g.,
neighborhoods) and thus these methods of correlation query
processing suffer from inefficiency, i.e., the processing of
correlation queries is substantially time consuming. Spatial and
temporal properties are important information in spatial time
series data, and should be considered in the design of efficient
query processing methods to facilitate processing correlation
queries. The design of such efficient query processing methods
is crucial to organizations which make decisions based on large
spatial time series data.

We have proposed filter-and-refine query processing algo-
rithms [26], [27] to exploit spatial properties for facilitating
correlation-based similarity queries on spatial time series data.
Spatial time series data comply with Tobler’s first law of geog-
raphy [23], which says that everything is related to everything
else but nearby things are more related than distant things.
Therefore, the attribute values of objects located in spatial



 

(a) Locations that support the association pattern
{FPAR-HI, NPP-HI}

 

(b) Land locations that correspond to grassland and
shrubland regions.

Fig. 8. Example of a non-random association pattern between FPAR-Hi and NPP-Hi events and the land locations where such pattern is observed frequently.

vicinity tend to be similar. The proposed algorithms first divide
the data into a collection of disjoint groups based on spatial
proximity. Each group might contain multiple time series of
nearby locations together. The queries are then processed at
the group level, instead of at the individual time series level
to achieve the performance gains. Algebraic analyses using
cost models and experimental evaluations using the real data
were carried out to show that the proposed algorithms saved
a large portion of computational cost, ranging from 40% to
98%. Further details are provided in [26], [27], [28].

VIII. C ONCLUSION

In this paper, we provided an overview of our preliminary
efforts to apply data mining techniques to the analysis of Earth
Science data. We believe that our initial results are promising.
For instance, we have been able to use our techniques to find
patterns that represent well-known patterns, e.g., well-known
climate indices. More importantly, we have also found new
patterns that are not known to Earth Scientists, e.g., candidate
climate indices and association patterns that relate land covers
to rules that connect climate variables and NPP. While more
evaluation is necessary to assess the Earth Science significance
of these results, one of the major goals of our work is to
produce new patterns and hypotheses for Earth Scientists to
investigate, and we feel that we have made progress towards
that goal.

Nonetheless, there are many tasks remaining both with re-
spect to data mining and the application of data mining results.
The main focus of the data mining work has been clustering
and association analysis, and we have only lightly explored
outlier detection, co-location mining, predictive modeling, and
other data mining approaches. Also, while the Earth Science
members of our team have evaluated and interpreted the data
mining results that we have produced so far, which has led to
publications in Earth Science journals [9], [10], [11], [12],
[13], [14], there is much more to do within the scope of our
current project. In the long term, we are hopeful that data
mining can play an important role in helping Earth Scientists

understand both global scale changes in biosphere processes
and patterns, and the effects of widespread human activities.
More broadly, improvements in data mining techniques made
during the investigation of Earth Science data may have
potential applications in other domains, such as transportation,
business logistics, public health, and public safety.
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