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ABSTRACT
Massive degradation in forest cover over recent decades
caused by natural and human activities has made ability to
detect changes in forest cover of critical importance. This pa-
per provides a brief overview of our research on identifying
changes in forest cover.
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change, Forest change

1. INTRODUCTION

The ability to detect changes in forest cover is of critical
importance for both economic and scientific reasons, e.g.
using forests for economic carbon sink management and
studying natural and anthropogenic impacts on ecosystems.
A key ingredient for effective forest management, whether
for carbon trading or other purposes, is quantifiable knowl-
edge about changes in forest cover. Rich amounts of data
from remotely sensed images are now becoming available for
detecting changes in forests or more generally, land cover.
However, in spite of the importance of this problem and the
considerable advances made over the last few years in high-
resolution satellite data acquisition, data mining, and online
mapping tools and services, end users still lack practical tools
to help them manage and transform this data into actionable
knowledge of changes in forest ecosystems that can be used
for decision making and policy planning purposes. Providing
this actionable knowledge requires innovations in a number
of technical areas: (i) identification of changes in global
forest cover, (ii) characterization of those changes, and (iii)
discovery of relationships between the number, magnitude,
and type of these changes with natural and anthropogenic
variables. To realize progress in the above areas, a number
of computational challenges in spatio-temporal data mining
need to be addressed. Specifically, analysis and discovery
approaches need to be cognizant of climate and ecosystem
data characteristics such as seasonality, inter-region variabil-
ity, multi-scale nature, spatio-temporal autocorrelation, high

dimensionality and massive data size. This paper provides
a brief overview of our research on identifying changes in
forest cover. For additional details in this and other aspects of
the research the reader is referred to [1].

2. TIME SERIES CHANGE DETECTION
APPROACHES TO FOREST DISTURBANCE

MONITORING

Due to the importance of the land cover change identification
problem, it has received extensive attention from the remote
sensing community [2, 3, 4]. The previous change detec-
tion studies have primarily relied on examining differences
between two or more satellite images acquired on different
dates [2]. These approaches have a number of limitations;
for example, changes that occur outside the image acquisition
windows are not mapped, it is difficult to identify when the
changes occurred, information about ongoing landscape pro-
cesses cannot be derived, and they are inherently unsuited for
application at global scale.

An alternative approach is to view the data in terms of
a vegetation time series at each location on the globe and
identify changes in the time series (essentially provide a
change score to each location and time that reflects the ex-
tent to which it is considered changed). These techniques
do not suffer from the above mentioned limitations of the
image based approaches. Furthermore, only time series ap-
proaches provide information about land cover dynamics that
are necessary to quantitatively assess the carbon impact of
land cover changes [5]. However, there are a number of spe-
cific characteristics associated with Earth Science data that
make this a challenging problem. Traditional data mining
techniques do not take advantage of the spatial and temporal
autocorrelation present in such data. Furthermore, vegetation-
related data sets are often of high spatial resolution, which
poses computational challenges. Finally, there is the issue
of high-dimensionality since long time series are common
in Earth Science (and the temporal resolution is increasing).



Though time series change detection has been studied in a
wide variety of domains like statistics [6], signal processing
[7] and control theory [8] and a number of techniques have
been proposed, these techniques are not suitable for the land
cover change detection problem primarily because they are
not scalable or are unable to take advantage of the inherent
structure present in earth science data. For example, the ma-
jor mode of behavior in the vegetation signal is seasonality,
i.e., the natural seasonal growing cycle is a dominant charac-
teristic of a time series and this intrinsic seasonality should
not itself be called a change. There exists an inherent natural
variability and noise in the earth science data because of the
local weather and other atmospheric conditions, that creates
additional challenges for the change detection algorithm.

We have developed several approaches for detecting dif-
ferent types of changes in vegetation index time series. These
approaches take as input the vegetation index time series and
the annual season length for a location and give as output the
change score corresponding to that location. The locations
under study can be ranked according to their change score
given by the algorithm. The higher ranked locations are those
that are most likely to have changed. Additional details about
some of these approaches are available in [1, 9].

3. ILLUSTRATIVE EXAMPLES OF LARGE SCALE
VEGETATION DISTURBANCES ACROSS THE

GLOBE

In this section we provide illustrative applications of time se-
ries based change detection algorithms applied to global veg-
etation index data to detect a variety of changes in the global
ecosystem.

3.1. Forest Fires

Forest fires burn millions of hectares of the world’s forests
every year resulting in large-scale economic damage, substan-
tial loss of human and animal life and large amounts of car-
bon being released into the atmosphere [10]. Forest fires can
be human induced or due to natural causes such as lightning.
In Indonesia, a large number of forest fires are triggered by
people clearing land for agriculture, unintentionally causing
large fires in adjacent forests. In Canada, the number of nat-
ural fires is roughly equal to the number of human induced
fires, though natural fires account for 80% of the total 2.5M
hectares of land area burned [11].

Time series change detection algorithms can be used for
detecting the occurrence of fires and indicate the quantitative
loss of vegetation that occurred. There has been some work in
time series-based fire detection, but this work has had limited
success. For example, the change detection algorithm used
to generate the Burned Area Product (a well known MODIS
data set) performs poorly in parts of North America such as
California [12] and is unable to quantify the amount of veg-

Source: Google Earth imagery.

Fig. 1. Events detected by yearly delta algorithm correspond-
ing to Zaca Fire in Santa Barbara County in California. Also
shown is a typical FPAR time series.

etation loss due to a fire. Forest fires often occur on a large
scale and ground truth in the form of fire polygons is avail-
able in several regions of the world including California and
Greece. In the last decade, primary disturbances to the forests
in these areas have been due to these large-scale fires. Be-
low, we show that fire events detected by our algorithm are in
agreement with independent ground truth. Our algorithm is
also able to detect the date of occurrence of these events and
the quantitative vegetation loss. Figure 1 shows a typical time
series for a burnt forest pixel in the Zaca fire in 2007. The
vegetation index is high until 2007, when a fire occurs, caus-
ing all pixels shown to have an abrupt drop in the vegetation
index following 2007.

3.2. Deforestation

Deforestation by land-use conversions from forests to agricul-
tural plantations are bound by many complex socio-economic
factors, including macro-economic pressures as land values
and commodity prices rise [13]. Deforestation continues at
an alarming rate of approximately 13 million hectares per
year [10] and produces such immediate consequences as bio-
diversity loss, loss of hydrological capacity, and increased net
emissions of greenhouse gases [14]. Brazil, for instance, lost
nearly 150,000 square kilometers of forest from 2000 to 2006,
accounting for almost 50% of all the humid tropical forest
clearing, nearly four times that of the next highest country
[14]. Below, we present illustrative examples of deforesta-
tion events detected by our algorithm in California, Brazil and
Siberia.



Source: Google Earth imagery.

Fig. 2. Logging in Northern California

The algorithms found several events in northern Califor-
nia corresponding to logging activities. Logging is different
from forest fires as it is unsynchronized, i.e. it does not occur
in the entire neighborhood in a short time window. Neighbor-
ing locations either are unaffected or get logged at different
dates. Also, loss of vegetation tends to be gradual because
clearing an area can take several days. Figure 2 shows one of
the locations in an area that was logged.

We also detect several locations in Brazil’s Amazon basin
that were deforested. Most of this activity was found in the
Mato Grosso region which is also called the “arc of deforesta-
tion.” Figure 3 shows the overlay of the locations in Brazil
predicted as deforested by our algorithm with the Google
Earth imagery. It can be seen that the disturbance events
marked with red dots occur where the imagery shows patches
of cleared forests. The FPAR time series shows standing
forest until year 2004 after which it is converted to pasture or
cropland.

We also detect large forested regions in southern Siberia
being converted to cropland and pastures. Figure 4 shows the
change events with a typical time series. The forested area
was green throughout the year, but after conversion it shows
a green up-green down cycle which is a characteristic feature
of a farm.

3.3. Natural Disasters

In addition to fires and deforestation, the change detection al-
gorithms also detect events corresponding to natural disasters,
such as floods, droughts, earthquakes, and hurricanes, which
cause widespread damage to vegetation. We illustrate some
of the events detected by our algorithm. The Ob river drains

Source: Google Earth imagery.

Fig. 3. Deforestation events detected by our algorithm in
Brazil. Plot shows the FPAR time series corresponding to
a deforested location.

Source: Google Earth imagery.

Fig. 4. Conversion of forested areas to cropland/pastures de-
tected in Siberia by the change detection algorithms.

Fig. 5. Images of Ob river and the surrounding area. The
image on the top is from a period of flooding and the image
at the bottom is the same area when it is not flooded.



into the Kara Sea. During years when the melted water from
the southern latitudes fails to drain into the frozen sea in the
north, large-scale seasonal flooding occurs (shown in Figure
5) causing devastation of vegetation surrounding the river.
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