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Abstract. It is well-known that forests play a vital role in maintaining biodiversity and the

health of ecosystems across the Earth. This important ecological resource is under threat from

both anthropogenic and biogenic pressures, ranging from insect infestations to commercial logging.
Detecting, quantifying and reporting the magnitude of forest degradation are therefore critical to

efforts towards minimizing the loss of one of Earth’s most crucial resources. Traditional approaches

that use image-based comparison for detecting forest degradation are frequently domain- or region-
specific, which require expensive training, and are thus not suited for application at global scale.

More recently, time series based change detection methods applied on remote sensing datasets

have gained much attention because of their scalability, accuracy, and monitoring capability at
frequent regular intervals. In this paper, we propose a novel approach to identify regions where

forest degradation occurs gradually. The proposed approach complements traditional domain- and
region-specific approaches by providing information on where degradation is occurring, and during

what time, at a global scale.

1. Introduction

Forests play a vital role in maintaining biodiversity and the health of ecosystems across the Earth.
However, this important ecological resource is under threat of degradation by both anthropogenic
and biogenic pressures. Forest degradation occurs due to a number of different causes ranging
from insect infestations to logging. Such reduction in forest cover not only has implications on the
global carbon cycle, but also causes adverse effects on the ecosystem which are often realized by
decrease in biodiversity, increase in the frequency of floods, droughts, changes in rainfall patterns,
etc. [15, 10, 16]. Thus, detecting, quantifying and reporting the magnitude of forest degradation is
critical to efforts towards minimizing this loss of one of Earth’s most crucial resources.

Remote sensing offers rich data sets that are very well-suited for monitoring forests around the
globe, in a regular fashion across time. A large variety of techniques and tools have been developed for
detecting changes in forest cover, and more generally land cover [4, 11]. However, detecting gradual
forest degradation (as opposed to abrupt changes caused by fires etc.) is particularly challenging
because the reduction in forest cover occurs very slowly and the amount of reduction observed across
time is small compared to natural variations.

Traditional approaches that use image based comparison for detecting forest degradation are
frequently domain-specific or region-specific [5] which require expensive training, and are thus not
suited for application at global scale. More recently, time series based methods applied on remote
sensing datasets have gained much attention to detect deforestation because of their scalability,
accuracy, and forest monitoring capability at frequent intervals. However, even most of the current
time series based approaches for detecting vegetation loss in forests are aimed at only certain types
of changes (e.g. due to fires), which are characterized by sudden and severe vegetation loss [12].

A number of approaches have been proposed for identifying gradual changes in a time series.
Kucera et al. [9] describe the use of the well-known CUSUM technique for land cover change de-
tection. CUSUM follows a simple approach of determining deviation in the values of a time series
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from an expected value, and the change score, giving the magnitude of change, is determined as
the maximum cumulative deviation. Another approach presented recently by Verbesselt et al. [17],
Breaks for Additive Seasonal and Trend (BFAST), decomposes a time series into trend, seasonal
and residual components. The time series is divided into segments such that intra-segment trend is
constant, while inter-segment trends are dissimilar. A trend breakpoint is associated with segment
boundaries. The seasonal component is handled in a similar fashion.

In this paper, we present a novel approach to identify regions where forest degradation is occurring
gradually (either due to biogenic or anthropogenic causes). The approach is robust, scalable and
easy to apply across different regions and vegetation types. The proposed method represents an
adaptation of CUSUM for the problem of gradual change detection. While CUSUM only identifies a
time series as changed or not, the proposed approach also identifies the period of change, in addition
to having a considerable improvement in performance.

We begin by describing the underlying remote sensing data and preprocessing procedure in Section
2. Sections 3 and 4 discusses the concepts behind the development of the new approach. We
formally present our method in Section 5 followed by a discussion in Section 6. We then evaluate
the performance of the proposed approach in Section 7 using independent validation data sets in
two regions of the world where the degradation has entirely different causes. Finally, in section 8, we
comparatively evaluate the proposed approach, CUSUM and BFAST for detecting gradual changes.

2. Data and Preprocessing
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Figure 1. Example of an EVI time series (with
noise in observations).

The time series data set used for this study
is the Enhanced Vegetation Index (EVI), which
is a product based on measurements taken from
MODIS instrument on NASA’s Terra satellite,
and is available for download from the Land
Processes Distributed Active Archive Center
(LPDAAC) [1]. EVI essentially measures the
“greenness” signal as a proxy for the amount of
vegetation at a location. The spatial resolution
of the dataset is 250 meters and the temporal
resolution is 16 days (23 time steps per year),
and covers the time period from from February
2000 to the present. The range of EVI is 0 to
1, where 0 indicates no vegetation and 1 indi-
cates vegetation saturation. Figure 1 shows an
example of an EVI time series.

Remote sensing data sets are frequently sub-
ject to contamination due to clouds, haze, pixel
geometry and other factors. We preprocess the EVI time series data set in order to remove undesired
fluctuations in EVI (such as the sharp increases in Figure 1). This improves the efficiency of iden-
tifying signatures of interest. For smoothing purposes, we have used the Savitzky-Golay smoothing
filter [13], which uses two parameters: polynomial degree desired for smoothing, and frame size. The
smoothing filter fits a polynomial function of the indicated degree over a window equal to the frame
size over each time step, the current time step being at the center of the window; the EVI value of
the current time step is then replaced with the polynomial fit.

3. Detecting forest degradation: problem formulation and a CUSUM approach

A reduction in forest cover is often reflected as a decrease in the EVI value. In fact, many existing
schemes compute difference in EVI (or related indices) between different years to identify changes.
However, the values of vegetation indices such as EVI can have a high degree of variability due to
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seasonality (e.g. vegetation is greener in the summer than in the winter in the temperate zones),
as well as due to natural variation in vegetation growth caused by environmental factors such as
temperature and precipitation.

Most existing methods have handled seasonality by comparing vegetation index values at (or
around) the same date in different years. Natural variability is much harder to handle since it can
result in too many false positives. The problem becomes even more acute for many non-forest covers
such as shrubs, since natural variability tends to be much larger in these cases. Although our focus
is on identification of degradation in forests, it is not possible to completely exclude non-forests from
any study due to the unavailability of highly precise forest maps [6].
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Figure 2. Example of a decreasing
time series. Vertical lines enclose a grad-
ually decreasing segment.

Given an EVI time series dataset, we are interested in
identifying time series such as the one shown in Figure 2,
where there is a perceptible decrease in the signal, along
with determining the approximate period of decrease (as
shown by the vertical lines in Figure 2). Identifying a time
series with a gradual decrease in vegetation is challenging
due to a number of reasons: distinguishing vegetation loss
from natural seasonal variations; differentiating between
a spurious decrease due to noise or environmental fac-
tors and a genuine decrease from degradation on ground;
correctly determining the period of decrease (start and
end time steps) especially when there is a high degree of
variability in the time series. There could also be a phe-
nological change during the decrease period or across the
decrease, and the algorithm must be able to handle such
cases and extract the decrease period appropriately.

3.1. Notation. Table 1 defines notation used in this paper.

n The number of time steps in a time series.
S The number of time steps corresponding to one year of data (we also call this

the season length). For biweekly data S = 23, and S = 12 for monthly data.
t1 First time step.
ti ith time step.
vti Data value at the time step ti

vti ...vtj All values between time steps ti and tj .
T A sample time series = v1v2v3...vi...vn

vti...tj mean(vti ...vtj )
∆i vti−S+1...ti − vti+1...ti+S

∆-series ∆S∆S+1∆S+2...∆n−S

Table 1. Notation for time series change detection.

3.2. CUSUM Method for detecting decreasing time series. CUSUM is a well-known change
detection algorithm that was originally developed in the domain of process control. It is one of the
earliest change detection algorithms developed, proposed by Page [14]. One of the defining features
of CUSUM is its ability to detect small and gradual changes in the process. The basic CUSUM
scheme has an expected value µ for the process. It then compares the deviation of every observation
to the expected value, and maintains a running statistic (the cumulative sum) CS of deviations from
the expected value. If there is no change in the process, CS is expected to be approximately 0; if
CS exceeds a user-defined threshold at any time step, the time series is flagged as changed.

There are multiple ways in which a change score can be assigned to a time series, the simplest of
which is to use max{CS1, CS2, . . . , CSn}. However, this score can be sensitive to noise [3]. Kucera
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(a) A sample time series with decreasing period

between time steps 100 and 210.
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(b) Corresponding difference series, D, (blue)

and cumulative sum series, Q, (green).

Figure 3. Measures computed by CUSUM.

et al. [9] developed a CUSUM approach for land cover change detection which uses a more robust
technique to compute the change score. Specifically, a bootstrap procedure is used to determine
the confidence of CS by determining the degree to which such a score can occur by chance. The
bootstrap procedure involves randomly permuting the input time series to obtain a distribution of
change scores R (CUSUM is run on each randomization). The confidence of the drop is determined

by the relative frequency of CS being greater than the randomized distribution, i.e. |CS>R|
|R| .

Kucera et al. [9] take the expected value µ as the mean of the entire time series. Other measures
may also be used to compute µ such as the value of the first time step, or the mean of the first S
values. The advantage of using the mean value across a periodic cycle over a single time step is that
the mean value is independent of the fluctuations in a time period (or seasonal variation in case of
the MODIS EVI time series).

We illustrate some drawbacks of the scoring mechanism of CUSUM described above:
(1) Change point of drop and period of decrease not identified. This method only identifies a score
corresponding to the maximum deviation in cumulative sum time series, and does not give the period
of change. Figure 3 shows the scoring process using CUSUM. It identifies the maximum value in the
cumulative sum series as the score. Thus, no change point of drop or period of drop is identified.
(2) Computed score may not be associated with the decreasing period. Computed score is the max-
imum cumulative deviation from the expected value, which may or may not depict the amount of
EVI lost during the decrease period. This can again be noticed from Figure 3b.

4. Adapting CUSUM for Gradual Degradation

In the original CUSUM approach, the expected value is always fixed in a time series regardless of
the way it is computed. In this paper, we propose a different strategy: If we take the expected value
at any time step ti+1 as the value at time step ti, then the deviation of values at each time step from
its expected value would give the amount of drop or rise from its previous value. However, such a
model would be dependent on the intra-periodic variation and the resulting deviation could be due
to the natural periodicity of the time series. In order to make this process independent of periodicity,
averaging over a periodic cycle can be used. Therefore, instead we take the mean value of the current
periodic cycle as the expected mean value for the next periodic cycle. The deviation between mean
values of successive periodic cycles is also equivalent to the drop in EVI across a time step ti that
marks the boundary between these periodic cycles, i.e. the one that ends at ti, and the other that
begins at ti+1. We refer to this type of differencing (computing drop from previous periodic cycle
in succession) as Successive Differencing (SD), which is different from computing the deviation
from a fixed expected value as done in CUSUM, which we refer to as Fixed Differencing (FD).
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If T is a given time series, n is the number of time steps in T , and S is the periodicity of T , we
can define SD and FD methods as:
FD: ∆c

i = vti − µ ∀ i ∈ 1 · · ·n
SD: ∆s

i = ∆i ∀ i ∈ S · · ·n− S (Refer to Table 1 for notation)
For MODIS EVI time series, ∆s

i ’s are computed as difference between the mean values of two
successive years (two consecutive sets of 23 values since S = 23).
FD gives deviation in values relative to the fixed expected value, while SD gives the drop relative

to the previous year. Also, in the first equation, individual data values are used for differencing while
in the second equation, averaged value over a seasonal cycle is being subtracted. Computing drop
from a previous value in succession can provide trend information in a time series, which is what
successive differencing does. Also, subtracting averaged values instead of individual values make the
trend information more robust to seasonal variations and noisy outliers. On the other hand, ∆c

i ’s
fluctuates with the seasonal variations, even when there is no decrease in vegetation. Also, it does
not provide trend information which is vital for identifying decreasing period in a time series.

Using Successive Differencing. As we have seen above, successive differencing using mean value
of annual segments can be used to determine trends in a time series. Therefore, we use SD instead
of FD for our approach. Below, we mention some possibilities in which SD could be used:

Consider a method for detecting gradual decrease that tries to identify the window in a time series
that has the largest drop: given a time series, identify two years, i.e. two sets of 23 consecutive time
steps, y1 and y2, such that the difference between the mean EVI of y1 and y2 is maximum in the time
series. This is similar to identifying the window where the sum of ∆s

i is maximum. This method will
work well for consecutively decreasing time series. However, there are some disadvantages of this
method when applied to a time series with high variation. The primary disadvantage is that this
method loses information about the time steps in between y1 and y2. For example, given the time
series shown in Figure 4, this method would identify the decrease as having occurred between years
2 and 11 even though it is clear that the time series increased significantly after year 7. Specifically,
if the time series rises and falls in between then such a time series is highly variable and it should
not be considered as changed. Another disadvantage is that if there are large spikes in a year due
to noise that distorts the mean EVI for that year in an otherwise stable time series, this time series
will be given a high score (drop from y1 to y2) by this method, even though this change is spurious.

To overcome drawbacks of the above method, yet another method to detect gradual decrease
could be to compute the difference between successive yearly sets (∆s

i ), and determine the longest
continuous window of positive ∆s

i . This method again has a major disadvantage that if there is
a spurious rise in time series due to noise, the drop window will fall short of that false rise and
thus could be determined much smaller than it actually is (e.g. for the time series in Figure 4, this
method would incorrectly detect end of degradation in year 5).

Building on the concepts described in this section, we propose a novel time series change detection
method, Persistent-∆ Approach, or PDELTA. It uses successive differencing as the base to compute
∆i’s. The key property of successive differencing is that as long as there is a decrease in the time
series from one year to the next, ∆i would be positive. If the decrease is at an almost constant
rate, the ∆i would be almost constant. As soon as ∆i becomes zero, it means that there has
been no vegetation change from past year to the present year. But it could be too soon to say
that the change in vegetation has stopped since this could be due to some noisy time steps and
it’s possible that after very few time steps, ∆i’s become positive and stay positive for a couple of
years or more. Thus the change didn’t really stop, but continued after a short time. Therefore,
the primary objective of PDELTA is to determine the window of maximum reliable drop. This
method tolerates natural variation which may cause small increases in individual years during an
extended period of degradation. For example, in Figure 4, the technique correctly identifies the
period between years 2 and 6 when degradation has occurred since it accounts for the perturbations
in the intervening years. However, if this rise in the time series violates a reliability condition, the
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approach differentiates it from the natural variation and does not consider this in the changed phase.
The next section describes the PDELTA method in detail.

5. Description of PDELTA

As mentioned in the previous section, the main objective of the PDELTA approach is to identify
the window of maximum reliable drop in a time series. It need not be a continuous drop, and some
amount of intermittent rise can be allowed as long as a decreasing trend is persistent. The amount of
intermittent rise allowed is controlled by a simple, but strong condition (Reliability Condition) which
essentially limits the amount of every intermittent rise during an extended period of degradation.
The remainder of this section describes the approach in detail.

As a first step, we compute ∆i, as described in the previous section, at each time step beginning
at the end of the first year (since we don’t have sufficient information to compute ∆i during the
first year) and terminating before the start of the last year (again due to insufficient information
during the last year). Let the series composed of ∆i’s, S ≤ i ≤ n − S, be ∆-series (Delta-series)
where S are the number of time steps in a year, and n are the number of time steps in the entire
time series. Next, we identify those time steps in the time series that have the characteristic to
become the extremes of the drop window. For this effect, we compute a Γ-series (Gamma-series)
from ∆-series, with each time step represented by γi, using the following transformation:

γi =

{
1 ∆i > 0

−1 ∆i ≤ 0

We say that those ith time steps are candidates for drop start for which γi−1 is -1 and γi is 1
(transition to 1). Similarly, those ith time steps are candidates for drop end for which γi−1 is 1 and
γi is -1 (transition from 1). The bottom plot in Figure 4 show an example of the ∆-series, Γ-series
scaled by a factor of 0.07, and candidate start and end time steps (b1, e1, etc.).

Let there be K candidate start and stop time steps identified in time series T , which are denoted
by bk and ek respectively, ∀k ∈ 1 . . .K. Between every bk and ek there is a decrease in EVI values
(decreasing trend), and between every ek and bk+1 there is an increase in EVI values (increasing
trend). For each bk we are interested in identifying the farthest el (1 ≤ k ≤ l ≤ K) such that
the time series pattern within these limits in general has a decreasing trend, even if there are mild
rises in between. If a drop starts at bk, then an intermediate rise occurs between every el and bl+1

(k ≤ l < K). In order to ensure that the decreasing trend is followed across these intermediate rises,
we test for a drop reliability condition at every el which must be satisfied before allowing the rise
between el and bl+1. This reliability condition is given below.
Reliability Condition (RC): It states that after the commencement of a drop at a time step
bk, the rise occurring at a certain time step el (ek ≤ el < eK) would not be considered as drop
termination if this rise is bounded by a fraction (x%) of the drop that has already occurred, and, if
there is an overall decrease in the EVI values during the time steps in the limited future of el. The
limited future is defined as the time steps following el during which the rise does not exceed x%.
The motivation for this is that if the current drop window has accumulated a large sum of ∆i, a
greater room for rise is allowed as long as the time series in general still has a decreasing trend.

As long as this condition is satisfied, el can be extended. As soon as this condition fails at a
certain candidate stop time step, we stop at that el, and the maximum reliable drop that began at
time step bk is terminated at el. This becomes a candidate drop window (cwp) for time series T .
Since there could be more such windows in the same time series that begin at other candidate start
time steps, bj , j 6= k, we repeat the above process for the remaining candidate start time steps.
Thus, we would have at most K candidate drop windows cwp, ∀p ∈ 1 · · ·K.

To identify the best drop window, we compute a score for each candidate window using one of the
methods described in Section 6. The maximum scoring window is determined as the representative
window of the time series. Currently, we identify a single representative window of a time series
because we are interested in identifying time series that have undergone change at least once. Thus,
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Figure 4. The top plot shows the original time series (line connecting the dots),
smoothened time series, and the identified changed period (between solid vertical
lines). The bottom plot shows the corresponding ∆-series (continuous curved line)
as well as the Γ-series (broken line) scaled by a factor of 0.07.
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Figure 5. A time series in Madagascar showing a spurious rise in EVI.
.

the significance of change in each time series is given by the score computed for their corresponding
representative change window. The higher the value, the more severe the change.

The example time series in Figure 4 captures the effectiveness of this approach. The top plot
shows the EVI time series, the smoothed time series, and the two vertical solid lines identifying the
drop period. It can be noticed that the time series gradually decreased over many years and then
stabilized. The bottom plot shows the corresponding ∆-series in solid curved line and the Γ-series
scaled by a factor of 0.07 by a broken line. Notice that the first drop in ∆-series below zero is
included in the maximum reliable window since the reliability condition is not violated.

Let us also consider a case of a spurious rise as shown in Figure 5. In such cases the drop
window resulting from this rise will be small since the subsequent period will not be able to satisfy
the reliability condition. Furthermore, the score of the identified drop window according to our
methodology (as would be described shortly) would be low. Hence these type of drops would be
easily differentiated from the genuine drops.

6. Scoring Mechanisms and Discussion on Reliability Condition

Scoring Mechanisms. Once the candidate change windows are determined in a time series, the
next step is to quantify the change in each window. Some of the methods used are: (i) Drop in
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EVI, which is the difference between the mean annual EVI just before the start of the drop and the
mean annual EVI just after the termination of the drop; (ii) Length of the Drop Window: The
length can be a powerful indicator of the confidence of the change. A decrease of longer duration,
even with a small Drop in EVI, can be of high confidence. Beetle infestation in Colorado (Figure 7)
is a good example of this scenario; (iii) Total Loss in EVI: If we assume that the drop didn’t take
place in an actually changed time series, we can suppose that the EVI pattern, P1, representing the
year before the start of the drop would have continued. In such a scenario, the total loss in EVI
would be the area enclosed between two time series, one that should have been had no vegetation
loss occurred, and the other which is the actual time series in which there is a loss in vegetation.

Here, we also introduce the concept of a third change point (the first being the drop start time
step and the second being the drop end time step). After the drop occurs, if one wants to determine
how long it takes for the time series to have a significant recovery, the third change point can be
used. The third change point is positioned at a time step after the second change point such that
the EVI values have risen a significant percent (say, 50%) of what it has dropped during the drop
window. The position of the third change point can also be an indicator of the confidence of the
drop. If the third change point is realized after many time steps following the drop window, the
drop is trustworthy because the vegetation stays low for a long time. On the other hand, if the third
change point occurs soon after the second change point, it might mean that either the vegetation
indeed recovered very quickly, or the drop was actually spurious and short-lived.

The different scoring schemes could also be incorporated into a single cost function. The new
cost function could be constructed such that it gives a minimum cost to a drop window that receives
a high score from all the above mentioned schemes, as well as high cost to a drop window getting
a low score from each scheme. A single cost threshold could be set which differentiates a genuine
change from a spurious one. This cost function must be designed with care such that it’s applicable
globally, and we leave this for investigation in future work.

Accounting for Variability in a Time Series. Though we have briefly mentioned variability in
a time series before, here we discuss it in the context of quantifying the EVI loss. Natural variability
occurs in EVI values from one year to the other due to changes in environmental conditions such
as temperature, precipitation, cloud cover, etc., or imprecision in measurement. Such a change in
a time series should not be regarded as a loss in vegetation. Furthermore, a true loss in vegetation
would be over and above the natural variability because a loss in vegetation equal to the natural
variability would actually be a common signature of that vegetation. A way to model the natural
variability is to take a mean of pairwise distance between EVI values of annual segments either
during the first few years (before the first change point) or immediate previous few years before
the first change point. The city-block distance measure (L1 norm) works well for computing this
variability. This variability is subtracted from the Drop in EVI in order to reflect a true drop in
vegetation on the ground. Similarly, the EVI values of the pattern P1 should be lowered by this
variability before computing the Total Loss in EVI. For evaluation presented in this paper, we have
used Total Loss in EVI as the scoring scheme with compensation for variability.

Potential Reliability Condition Augmentation. In the previous section, we described a method
to determine the start and end time steps of a candidate drop window. As it would appear, these
change points are dependent on the reliability condition used. We have described a simple reliability
condition that limits the amount of rise in the time series once the drop has begun. If the rise is
greater than a threshold, the drop is terminated by positioning a second change point before this
rise and a new drop window is initiated at the next candidate start time step. Finally, the best drop
window is selected as the representative drop window of the time series.

The advantage of using the above reliability condition is that it is simple, as well as it has only one
parameter. But this condition may handle some time series changes differently from what one might
prefer. For instance, if there is a time series that drops during the third year, stays almost constant
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(a) A snapshot showing locations identified as changed

by the proposed approach (red circles) overlaid on the
validation data polygons.

(b) Snapshot showing a large region in Colorado where

there was a drop in EVI due to Fire in the year 2002.
Most of this region is not covered by the polygons.

Figure 6. Snapshots showing regions in Colorado where vegetation loss was detected.

for the next five years, and then drops again during the eighth and ninth years, then the start and
end change points would be identified around the second year and the ninth year respectively. It
would overlook that the time series is not decreasing at all for many intermittent years. It might be
more desirable to include these two drops in separate drop windows instead of one. But such cases
are not a limitation, as the proposed reliability condition can be adapted to handle these cases. It
can be taken as a base condition over which other conditions are added, which may or may not be
region specific. In the context of the above example problem, one possible adaptation could be to
add a condition that the drop window must have recurrent drops, say every y years or so. This
wouldn’t allow a period of stagnation for more than y years. Note that this modification would
result in the use of another parameter, y, thus deviating further from simplicity.

7. Evaluation

Evaluation of a scheme for detecting changes in forest cover is challenging due to the lack of
high-quality ground truth. The most reliable methods for generating ground truth (e.g. ground
surveys) are very expensive and are thus only available for small regions.

In the absence of such gold standard ground truth, less reliable labels generated by some other
scheme or via aerial surveys can still be used for validation, but care must be taken to check if “false
positives” (i.e. changes found by the scheme but not in the validation data) are indeed false, since
they could have been missed by the scheme used to generate labels. Similarly, one needs to check if
“false negatives” (i.e. changes noted in the validation data but not found by the scheme) are indeed
changes on the ground as they could be incorrectly classified as changed by the other scheme.

We evaluated our approach on two regions; Northern Colorado and Southern Madagascar for
which moderate quality labels are available in the form of polygons covering degraded areas of the
forests. These regions are interesting because they have completely different vegetation types, and
the degradation is caused by different mechanisms; specifically, insect damage in Colorado, and
logging in Madagascar. During analysis in both regions we emphasize the strength of this algorithm
in detecting changes that are difficult to identify, as well as the capability of this approach to capture
many changes that are missed by the validation data.

7.1. Evaluation on Colorado Forests. The first region of analysis is forests in northern Colorado
(the region bounded by 39◦N—41◦N; 108◦W—104.5◦W). The US Forest Service and its partners
[2] maintain data sets which map the regions of forest cover that have degraded between years 2002
and 2008 in northern Colorado. The objective was to detect regions of forest degradation using
our approach and evaluate it against the above validation data (which has been transformed to
polygons). We present our analysis as follows:

True positives are points detected by our approach that also lie in the polygons. As seen in
Figure 6a, there is a very good overlap of the detected points with the validation polygons. The
algorithm is also able to correctly identify the period of degradation. Colorado is a difficult region

9



0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Duration: 191

Change Pt1: 25

Change Pt2: 216 Lat: 40.9178

Lon: −106.728

E
V

I

Time Steps

Figure 7. A typical gradual drop in Colorado due to beetle infestation.

(a) This figure shows an example time series in Colorado
that has no perceptible change but which fall inside the

ground truth polygon.

(b) Time series of a region in Madagascar showing grad-
ual decrease in EVI starting from year 2001, which lie

inside the ground truth polygon.

Figure 8. Snapshots of false negatives in Colorado and true positives in Madagascar.

because changes here are often very gradual, sometimes to the extent that there is no visible change
in EVI signal upon manual inspection. Nevertheless, our approach identified a significant number
of points. Figure 7 shows the typical EVI time series in this region.

False positives are points that we detected as change but do not lie in any of the polygons.
There could be several reasons for this: (i) the decrease in vegetation in these areas is caused by
factors other than those considered in constructing the validation data; (ii) it is known that the
polygons can be inaccurate (iii) these points are in fact not changed, but due to noise in EVI appear
as changed and thus given a high score by the proposed approach. Our manual inspection shows
that majority of false positives with high scores are due to (i) and (ii). For example, consider the
region shown in Figure 6b. This region is not part of any polygon even though the change is quite
apparent and is likely due to fire [7].

False Negatives are points that we did not detect as changed but which lie inside the polygons.
Figure 8a, shows an example of such a time series. This time series does not show any change in the
EVI signal. There are numerous time series in this region that show little perceptible change and
are in the polygons. So either the vegetation loss here is too gradual to be detected by our approach,
the change on the ground is not captured by the EVI signal, or the polygons are inaccurate.

7.2. Evaluation on Madagascar Forests. The second region of analysis is southern Madagascar
(the region bounded by 25.6◦S—20◦S). The validation data is obtained from Center for Applied
Biodiversity Science (CABS) at Conservation International (CI), whose analysis is based on bitem-
poral Landsat image comparison between years 2001 and 2005 [8]. Hence, the validation data (or
polygons) cover changes only between these two years.
True Positives and False Negatives: Figure 8b shows an example of a true positive. The image
clearly shows the gradual drop starting in the year 2001. Most points in the validation polygons
show similar behavior, although with varying decay rate and duration. Hence, effectively there are
few false negatives since most points in the validation polygons can be found by our algorithm.
False Positives: Most of the false positives were observed due to the following reasons:
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(a) A snapshot showing a large region in Madagascar
where vegetation loss started to occur in the year 2001.

(b) This figure shows an area where vegetation loss oc-
curred after year 2005.

Figure 9. False Positives in Madagascar having a decreasing EVI signal.

(1) Vegetation degradation occurred during the period of analysis (2000-2005) but the vegetation
recovered during 2005, which causes it to be missed by the technique used in generating the validation
data (Figure 9a). The entire cluster of points to the left in the figure has similar time series signature
but lies outside the validation polygons. This illustrates the limitation of the technique that are based
on the comparison of images taken on two different dates. (2) Significant vegetation degradation is
visible only after 2005 hence was not included in the validation data set. Figure 9b shows an example
of such a region. This type of identification also highlights the capability of our approach to find
changes with high temporal precision in a continuous manner. This is opposed to the image-based
methods where analysis is usually done on snapshots of images generally few years apart.

8. Comparative Evaluation on Synthetic Dataset

In this paper, we compare our proposed technique with two other approaches for gradual change
detection, CUSUM and BFAST [17] using data sets with simulated noise and change characteristics.
The BFAST technique is designed to detect long-term changes in satellite image time series. It
decomposes a time series into trend, seasonal, and residual components, such that the intra-segment
models are constant, while inter-segment models are dissimilar. BFAST identifies the optimal po-
sition of trend and seasonal breakpoints by minimizing the residual sum of squares (RSS), and
the optimal number of breaks can be determined by minimizing an information criterion. Before
estimating the breakpoints, the ordinary least squares residuals-based moving sum test is used to
identify if any breakpoints are occurring in the time series. As output, BFAST provides the trend
breakpoints and associated trends, seasonal breakpoints and associated seasonal models, and logical
values indicating whether the time series is considered changed in the seasonal or trend components.
We do not consider the seasonal component in this paper since we are looking for a decreasing trend.

Evaluating our algorithm against BFAST is not straightforward since BFAST looks not only for
drops, but any type of trend change in a time series. Also, simply consulting the logical vector
values that labels a time series as changed was not feasible for two reasons: (i) BFAST appears
to be sensitive to noise and frequently finds different trends even in a stable time series and labels
them as changed. (ii) BFAST would label a time series as changed if any type of trend change
is present, notwithstanding the absence of a decreasing trend. In addition, BFAST also requires
some parameter settings such as the minimum segment size and maximum number of breakpoints
desired. These parameters are not mandatory, but not setting them makes it quite sensitive to
noise, resulting in breaking even a single trend into multiple segments. Therefore, construction of
the synthetic datasets had to be in consonance with the parameter values of BFAST.

We constructed two types of datasets, DS1 and DS2, the first containing three different trends
(two trend breakpoints), and the other containing four different trends (three trend breakpoints).
The maximum number of breakpoints set in BFAST for these two types of datasets were two and
three respectively, and it was expected that BFAST would correctly identify all the given trends.
Since we are interested in identifying the decreasing trend, our trend of interest among the ones
returned by BFAST is the one which has the largest decrease across it. Its change score (which also
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represents the score of the time series) is computed in the same manner in which we compute the
score for our proposed approach. Below, we describe the creation process of the synthetic dataset.

8.1. Synthetic Data Generation. The datasets, DS1 and DS2 are comprised of 1100 time series
each, in which a gradual decrease phase was inserted in 80 time series for DS1, and 120 time series
for DS2. In DS1, 40 time series also have an increasing trend. The remaining stable time series in
both the datasets are identical (total: 980). Each time series has 322 time steps, with a seasonal
period of 23 time steps (in order to mimic the MODIS EVI time series having 14 years of data).
The seasonality in a time series is created using a function of the form:

F (x) = A ∗ e
−|x−m|

B

where A controls the amplitude, x varies between time steps of a particular year, m controls the
position of the peak in that year, and B controls the curve. The shape of F (x) mimics a typical
seasonal vegetation pattern of a forested region (or farming cycle) as reflected in an EVI time series.

Each time series has different types of noise added to it. We define these below, followed by the
characteristics of the changed and stable time series.

Noise characteristics Two types of noise are introduced in the dataset. w1 is white noise that
is added to each time step in the time series. w2 is outliers, that results in very high (upward spikes)
or very low (downward spikes) values at certain time steps as compared to that of its neighbors.

Characteristics of a changed time series There are three phases in these time series. (1)
beforePhase is the period in the time series before a drop. Here, seasonal cycles (pattern during
one year) are represented by F (x). This phase may have an increasing trend or a stable trend.
Noise w1 and w2 is added to each time step. All introductions in this phase are probabilistic as a
Gaussian distribution within sufficient ranges specified in advance. This includes the values of w1,
w2, duration of this phase, height of the data values during each year, duration of the increasing
trend if any. (2) changePhase starts as soon as beforePhase ends. The majority of these time series
have a decreasing trend. The base level of successive years in this phase is reduced gradually from
starting of this phase till its end. The duration of this phase and the amount of drop introduced are
probabilistic within a certain range. Noise w1 and w2 are added to this phase as well. In a small
fraction of time series, an increasing trend is added during this phase instead of a decreasing trend
to include more variety of time series. However, since these time series do not contain a decreasing
trend, they are considered as false positives if detected by any algorithm. (3) afterPhase starts after
the changePhase ends. Each year in this phase is also represented by F (x) with w1 and w2 added.

Characteristics of a stable (unchanged) time series These time series have one phase with
a constant level whose value is probabilistic within a certain range. Each seasonal cycle in these
time series is also represented by F (x) with noise w1 and w2 added.

8.2. Evaluation Strategy. PDELTA, CUSUM, and BFAST are applied to these datasets after
preprocessing as described in Section 2. We compare the performance of our approach with CUSUM
and BFAST separately. It is because these two approaches return different information about the
drop, and we adjust our evaluation according to this information. For CUSUM, we combine the
samples of time series from datasets DS1 and DS2 into a single dataset DS0.

8.3. Comparison with CUSUM. We evaluated the performance of PDELTA and CUSUM on the
dataset DS0. There are four different types of time series in DS0 that have a decreasing trend (Figure
10). Each pattern has 50 different samples. Overall, this dataset has 200 decreasing time series,
and 1020 stable time series (Total: 1220). The time series patterns included in DS0 are common
in the real world datasets. Pattern one (Figure 10a) is an example of a stable forest that degrades
over many years. Pattern two (Figure 10b) is an example of conversion of forests to farm lands, as
could be noticed from the typical farming cycles during the later part of the time series. Figure 10c
reflects some plantation following a deforestation. Figure 10d could depict a failed reforestation.

The precision-recall curve of the result of the two algorithms is shown in Figure 11a. CUSUM
performed best on the samples of the pattern shown in Figure 10a. Admittedly, CUSUM performs
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(a) Pattern one
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(b) Pattern two
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(c) Pattern three
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(d) Pattern four

Figure 10. Different decreasing patterns in D0 dataset. Each pattern has fifty
samples (total two-hundred). The horizontal line shows the mean of the time series.

well for any gradually decreasing time series that accumulates a large score during the beginning
time steps, which would happen if most of the beginning values are placed above the expected value
µ. However, CUSUM would perform equally poorly on time series having an opposite signature.
This highlights a major drawback of CUSUM. Consider the patterns two and three shown in Figures
10b and 10c, on which CUSUM performed poorly. In these time series, most of the values in the
beginning are below µ, which is taken as the mean of the time series, implying that the majority of
the later values are above µ. Such time series would never be able to accumulate a high cumulative
sum since it incurs a large loss in the beginning due to negative deviations, and therefore would
be given a low score. Many such scenarios could be constructed where there is a decreasing trend
present but the time series never accumulates a high enough score for it to be significant.

We also investigated alternative ways of computing the expected value, but these variations either
repeated some of the above drawbacks, or other drawbacks were discovered in them. For instance, by
taking µ as the mean value of the first year, CUSUM performed poorly on patterns two, three, and
four (Figure 10). Note that if we consider this variation, we are looking for the minimum cumulative
sum (instead of the maximum) since an ideally decreasing time series would have a highly negative
cumulative sum. The main disadvantage of this variation is that the cumulative sum is highly
dependent on the first year values. If the first year values are noisy, it can drastically affect the
algorithmic output. As an example, if µ is even slightly high due to noise, a stable time series could
get a high score. In contrast, if µ is low, decreasing time series can go undetected (Figure 10d).

The precision-recall curve suggests that PDELTA performed considerably better than CUSUM
on this dataset. Additionally, PDELTA also identifies the period of decrease.

8.4. Comparison with BFAST. Our evaluation with BFAST is based on two factors: (1) Precision-
recall curves for PDELTA and BFAST, formed by ranking the time series in decreasing order of
scores, when evaluated on DS1 and DS2 (Figures 11b and 11c). (2) Scatter plots of the deviation of
the change points identified by the two approaches from the actual positions where the breakpoints
were introduced in the synthetic datasets (Figure 12).

The scatter plots show that the distribution of the deviation of the change points identified by
PDELTA is closer to zero than that of BFAST. BFAST segments a time series based on RSS and a
Bayesian Information Criteria (BIC), which has no bias towards identifying decreasing periods. If
identifying the decreasing trend as a separate segment minimizes RSS, BFAST will correctly identify
the decreasing trend. Otherwise, it may combine a part of the decreasing trend with an adjacent
trend. Also, BFAST appears to be sensitive to noise in a time series. It correctly detected the trends
introduced for many time series (Figure 13a), but it segmented stable time series into different trends
as well (Figure 13b). This suggests that BFAST might not be very suitable for highly variable time
series, where noise levels can distort the ideal seasonal pattern enough. Such highly variable time
series are characteristic of the tropical belt such as in Para (Brazil), Peru, Congo, etc.
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Figure 11. Precision curves (blue) and recall curves (red) for PDELTA (solid
curves), CUSUM (dashed curves), and BFAST (dashed curves).
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Figure 12. Scatter plots of the deviation of change points detected by PDELTA
and BFAST from actual drop start (x-axis) and drop end (y-axis) time steps.
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(a) Correctly detecting a decreasing trend.
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(b) Many trends identified in stable time series.

Figure 13. Trends using BFAST. Vertical lines identify the period of maximum drop.

9. Conclusion

In this paper, we presented a globally scalable novel approach, PDELTA, for detecting a gradually
decreasing EVI time series that can capture changes caused by a variety of sources. PDELTA can
be considered an adaptation of CUSUM with the added capability of identifying the period of
decrease and quantifying the magnitude of drop in a time series, while being more robust in the
presence of noise and spurious changes. We demonstrated the efficacy of the proposed approach
using independent validation data sets in Colorado and Madagascar. It was also shown that genuine
changes were detected by our technique which were missed by other approaches, as well as points
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identified as changed by other approaches with no perceptible EVI signal were not detected. We
comparatively evaluated our technique with CUSUM, and the state of the art BFAST technique.
BFAST in its present form is computationally very expensive, whereas both PDELTA and CUSUM
are quite fast. PDELTA can also identify reforested areas depicted by increase in vegetation simply
by reversing a time series before applying this algorithm. Future extensions of this work include
adapting PDELTA to detect more general types of changes (e.g. abrupt changes). Also, while this
paper focuses on identifying the single most significant drop in a time series, PDELTA is able to
identify multiple decreasing segments. Thus, other decreasing segments could also be identified as
separate changes if the drop within them is also significant (multiple change detection). This aspect
of PDELTA needs to be further explored and developed.
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